Spaces:
Sleeping
Sleeping
import os | |
import json | |
import gradio as gr | |
import streamlit as st | |
from huggingface_hub import HfApi, login | |
from dotenv import load_dotenv | |
from llm import get_groq_llm | |
from vectorstore import get_chroma_vectorstore | |
from embeddings import get_SFR_Code_embedding_model | |
from kadi_apy_bot import KadiAPYBot | |
# Load environment variables from .env file | |
load_dotenv() | |
vectorstore_path = "data/vectorstore" | |
GROQ_API_KEY = os.environ["GROQ_API_KEY"] | |
HF_TOKEN = os.environ["HF_Token"] | |
with open('config.json', 'r') as file: | |
config = json.load(file) | |
login(HF_TOKEN) | |
hf_api = HfApi() | |
# Access the values | |
LLM_MODEL_NAME = config['llm_model_name'] | |
LLM_MODEL_TEMPERATURE = float(config['llm_model_temperature']) | |
def initialize(): | |
global kadiAPY_bot | |
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) | |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) | |
kadiAPY_bot = KadiAPYBot(llm, vectorstore) | |
initialize() | |
def bot_kadi(history, session_state): | |
user_query = history[-1][0] | |
response = kadiAPY_bot.process_query({ | |
"query": user_query, | |
"history": session_state["conversation"] # Pass full conversation history | |
}) | |
# Update the session history | |
history[-1] = (user_query, response) | |
session_state["conversation"].append({"query": user_query, "response": response}) | |
yield history | |
# Gradio utils with session state | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## KadiAPY - AI Coding-Assistant") | |
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") | |
session_state = gr.State({"conversation": []}) | |
with gr.Tab("KadiAPY - AI Assistant"): | |
with gr.Row(): | |
with gr.Column(scale=10): | |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) | |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
clear_btn = gr.Button("Clear", variant="stop") | |
gr.Examples( | |
examples=[ | |
"Write me a python script which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", | |
"I need a method to upload a file to a record. The id of the record is 3", | |
], | |
inputs=user_txt, | |
outputs=chatbot, | |
fn=add_text, | |
label="Try asking...", | |
cache_examples=False, | |
examples_per_page=3, | |
) | |
# Bind input and button to modified bot_kadi | |
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then( | |
bot_kadi, [chatbot, session_state], [chatbot] | |
) | |
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then( | |
bot_kadi, [chatbot, session_state], [chatbot] | |
) | |
clear_btn.click(lambda: None, None, chatbot, queue=False).then( | |
lambda: {"conversation": []}, None, session_state, queue=False # Clear session state | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |