chainlit-assistant / ver1(get)_app.py
camparchimedes's picture
Update ver1(get)_app.py
c51467e verified
# ---------------------------------------------------for backend looks-------------------------------------------------
#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
#content = file.read()
#print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------
# ===========================================
# ver1(get)_app.py
# ===========================================
import asyncio
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
#from langchain.memory import ConversationTokenBufferMemory
#from langchain.memory import ConversationSummaryMemory
from api_docs_mck import api_docs_str
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
#if not auth_token.startswith("Bearer "):
#auth_token = f"Bearer {auth_token}"
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
match = re.search(booking_pattern, user_message)
try:
if match:
bestillingskode = match.group()
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
booking_info = json.loads(response.get("output", "{}"))
formatted_response = f"""
Her er informasjon for bestillingskode: {bestillingskode}
| Felt | Detaljer |
|-------------|----------------------------------------|
| Navn: | {booking_info.get('Navn', 'N/A')} |
| Beløp: | {booking_info.get('Beløp', 'N/A')} NOK |
| Check-In: | {booking_info.get('Checkin', 'N/A')} |
| Check-Out: | {booking_info.get('Checkout', 'N/A')} |
| Addresse: | {booking_info.get('Addresse', 'N/A')} |
| Bruker ID: | {booking_info.get('Bruker ID', 'N/A')} |
| Viktig informasjon: | {booking_info.get('Viktig informasjon', 'N/A')} |
| Message: | {booking_info.get('Message', 'N/A')} |
"""
await cl.Message(content=formatted_response).send()
else:
await cl.Message("Jeg kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send()
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
except Exception as e:
response = {"output": "Jeg får desverre ikke fram noe informasjon akkurat nå."}
response_key = "output" if "output" in response else "text"
return message.content
"""
if match:
bestillingskode = match.group()
question = f"Retrieve information for booking ID"
api_url = f"{base_url}?search={booking_id}"
response = await api_chain.acall(
{
"booking_id": bestillingskode,
"question": question,
"api_url": api_url
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
"""