|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import os |
|
import re |
|
import time |
|
import json |
|
|
|
import chainlit as cl |
|
from dotenv import load_dotenv |
|
|
|
from langchain import hub |
|
from langchain_openai import OpenAI |
|
from tiktoken import encoding_for_model |
|
from langchain.chains import LLMChain, APIChain |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain.memory.buffer import ConversationBufferMemory |
|
|
|
|
|
|
|
|
|
from api_docs_mck import api_docs_str |
|
|
|
load_dotenv() |
|
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") |
|
|
|
|
|
|
|
|
|
|
|
daysoff_assistant_template = """ |
|
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff. |
|
#By default, you respond in Norwegian language, using a warm, direct, and professional tone. |
|
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to |
|
to this. |
|
You do not provide information outside of this scope. If a question is not about this topic, respond with |
|
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser |
|
må du nok kontakte kundeservice på [email protected]😊" |
|
Chat History: {chat_history} |
|
Question: {question} |
|
Answer: |
|
""" |
|
daysoff_assistant_prompt = PromptTemplate( |
|
input_variables=['chat_history', 'question'], |
|
template=daysoff_assistant_template |
|
) |
|
|
|
api_url_template = """ |
|
Given the following API Documentation for Daysoff's official |
|
booking information API: {api_docs} |
|
Your task is to construct the most efficient API URL to answer |
|
the user's question, ensuring the |
|
call is optimized to include only the necessary information. |
|
Question: {question} |
|
API URL: |
|
""" |
|
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], |
|
template=api_url_template) |
|
|
|
api_response_template = """ |
|
With the API Documentation for Daysoff's official API: {api_docs} in mind, |
|
and the specific user question: {question}, |
|
and given this API URL: {api_url} for querying, |
|
and response from Daysoff's API: {api_response}, |
|
never refer the user to the API URL as your answer! |
|
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. |
|
This way you directly address the user's question in a manner that reflects the professionalism and warmth |
|
of a human customer service agent. |
|
Summary: |
|
""" |
|
api_response_prompt = PromptTemplate( |
|
input_variables=['api_docs', 'question', 'api_url', 'api_response'], |
|
template=api_response_template |
|
) |
|
|
|
@cl.on_chat_start |
|
def setup_multiple_chains(): |
|
llm = OpenAI( |
|
model='gpt-3.5-turbo-instruct', |
|
temperature=0.7, |
|
openai_api_key=OPENAI_API_KEY, |
|
max_tokens=2048, |
|
top_p=0.9, |
|
frequency_penalty=0.1, |
|
presence_penalty=0.1 |
|
) |
|
|
|
conversation_memory = ConversationBufferMemory(memory_key="chat_history", |
|
max_len=30, |
|
return_messages=True, |
|
) |
|
|
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=daysoff_assistant_prompt, |
|
memory=conversation_memory |
|
) |
|
|
|
cl.user_session.set("llm_chain", llm_chain) |
|
|
|
api_chain = APIChain.from_llm_and_api_docs( |
|
llm=llm, |
|
api_docs=api_docs_str, |
|
api_url_prompt=api_url_prompt, |
|
api_response_prompt=api_response_prompt, |
|
verbose=True, |
|
limit_to_domains=None |
|
) |
|
|
|
cl.user_session.set("api_chain", api_chain) |
|
|
|
cl.on_message |
|
async def handle_message(message: cl.Message): |
|
user_message = message.content.lower() |
|
llm_chain = cl.user_session.get("llm_chain") |
|
api_chain = cl.user_session.get("api_chain") |
|
|
|
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" |
|
booking_pattern = r'\b[A-Z]{6}\d{6}\b' |
|
match = re.search(booking_pattern, user_message) |
|
|
|
try: |
|
|
|
if match: |
|
bestillingskode = match.group() |
|
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}" |
|
|
|
response = await api_chain.acall( |
|
{ |
|
"bestillingskode": bestillingskode, |
|
"question": question |
|
|
|
}, |
|
callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
booking_info = json.loads(response.get("output", "{}")) |
|
|
|
formatted_response = f""" |
|
Her er informasjon for bestillingskode: {bestillingskode} |
|
|
|
| Felt | Detaljer | |
|
|-------------|----------------------------------------| |
|
| Navn: | {booking_info.get('Navn', 'N/A')} | |
|
| Beløp: | {booking_info.get('Beløp', 'N/A')} NOK | |
|
| Check-In: | {booking_info.get('Checkin', 'N/A')} | |
|
| Check-Out: | {booking_info.get('Checkout', 'N/A')} | |
|
| Addresse: | {booking_info.get('Addresse', 'N/A')} | |
|
| Bruker ID: | {booking_info.get('Bruker ID', 'N/A')} | |
|
| Viktig informasjon: | {booking_info.get('Viktig informasjon', 'N/A')} | |
|
| Message: | {booking_info.get('Message', 'N/A')} | |
|
""" |
|
|
|
await cl.Message(content=formatted_response).send() |
|
|
|
else: |
|
await cl.Message("Jeg kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send() |
|
|
|
else: |
|
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
except Exception as e: |
|
response = {"output": "Jeg får desverre ikke fram noe informasjon akkurat nå."} |
|
|
|
response_key = "output" if "output" in response else "text" |
|
|
|
return message.content |
|
|
|
|
|
|
|
|
|
""" |
|
if match: |
|
bestillingskode = match.group() |
|
question = f"Retrieve information for booking ID" |
|
|
|
api_url = f"{base_url}?search={booking_id}" |
|
|
|
response = await api_chain.acall( |
|
{ |
|
"booking_id": bestillingskode, |
|
"question": question, |
|
"api_url": api_url |
|
}, |
|
callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
else: |
|
response = await llm_chain.acall(user_message, |
|
callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
response_key = "output" if "output" in response else "text" |
|
await cl.Message(response.get(response_key, "")).send() |
|
return message.content |
|
|
|
|
|
|
|
""" |