lamiaaEl's picture
Update app.py
687b539 verified
import os
import numpy as np
import streamlit as st
from transformers import AutoModelForTokenClassification, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
import pytesseract
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")
labels = ["language", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]
label2id = {label: idx for idx, label in enumerate(labels)}
id2label = {v: k for k, v in label2id.items()}
label2color = {
'language': 'blue', '1': 'red', '2': 'red', '3': 'red',
'4': 'orange', '5': 'orange', '6': 'orange', '7': 'green',
'8': 'green', '9': 'green', '10': 'green'
}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
return label
def process_image(image):
width, height = image.size
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction)
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
st.title("Language Levels Extraction using LayoutLMv3 Model")
st.write("Use this application to predict language levels in CVs.")
uploaded_file = st.file_uploader("Choose an image...", type="png")
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Predict'):
annotated_image = process_image(image)
st.image(annotated_image, caption='Annotated Image', use_column_width=True)