Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import streamlit as st | |
from transformers import AutoModelForTokenClassification, AutoProcessor | |
from PIL import Image, ImageDraw, ImageFont | |
import pytesseract | |
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' | |
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True) | |
model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4") | |
labels = ["language", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] | |
label2id = {label: idx for idx, label in enumerate(labels)} | |
id2label = {v: k for k, v in label2id.items()} | |
label2color = { | |
'language': 'blue', '1': 'red', '2': 'red', '3': 'red', | |
'4': 'orange', '5': 'orange', '6': 'orange', '7': 'green', | |
'8': 'green', '9': 'green', '10': 'green' | |
} | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
return label | |
def process_image(image): | |
width, height = image.size | |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
offset_mapping = encoding.pop('offset_mapping') | |
outputs = model(**encoding) | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction) | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
return image | |
st.title("Language Levels Extraction using LayoutLMv3 Model") | |
st.write("Use this application to predict language levels in CVs.") | |
uploaded_file = st.file_uploader("Choose an image...", type="png") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
if st.button('Predict'): | |
annotated_image = process_image(image) | |
st.image(annotated_image, caption='Annotated Image', use_column_width=True) | |