Spaces:
Running
Running
import os | |
import torch | |
import shutil | |
import librosa | |
import warnings | |
import numpy as np | |
import gradio as gr | |
import librosa.display | |
import matplotlib.pyplot as plt | |
from collections import Counter | |
from model import EvalNet | |
from utils import get_modelist, find_wav_files, embed_img | |
TRANSLATE = { | |
"m_bel": "Bel Canto, Male", | |
"f_bel": "Bel Canto, Female", | |
"m_folk": "Folk Singing, Male", | |
"f_folk": "Folk Singing, Female", | |
} | |
CLASSES = list(TRANSLATE.keys()) | |
TEMP_DIR = "./__pycache__/tmp" | |
SAMPLE_RATE = 22050 | |
def wav2mel(audio_path: str, width=1.6, topdb=40): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
non_silents = librosa.effects.split(y, top_db=topdb) | |
non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr) | |
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) | |
dur = librosa.get_duration(y=non_silent, sr=sr) | |
total_frames = log_mel_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_mel_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def wav2cqt(audio_path: str, width=1.6, topdb=40): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
non_silents = librosa.effects.split(y, top_db=topdb) | |
non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
cqt_spec = librosa.cqt(y=non_silent, sr=sr) | |
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) | |
dur = librosa.get_duration(y=non_silent, sr=sr) | |
total_frames = log_cqt_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_cqt_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def wav2chroma(audio_path: str, width=1.6, topdb=40): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
non_silents = librosa.effects.split(y, top_db=topdb) | |
non_silent = np.concatenate([y[start:end] for start, end in non_silents]) | |
chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr) | |
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) | |
dur = librosa.get_duration(y=non_silent, sr=sr) | |
total_frames = log_chroma_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_chroma_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def most_common_element(input_list: list): | |
counter = Counter(input_list) | |
mce, _ = counter.most_common(1)[0] | |
return mce | |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): | |
if os.path.exists(folder_path): | |
shutil.rmtree(folder_path) | |
if not wav_path: | |
return None, "Please input an audio!" | |
spec = log_name.split("_")[-3] | |
os.makedirs(folder_path, exist_ok=True) | |
try: | |
model = EvalNet(log_name, len(TRANSLATE)).model | |
eval("wav2%s" % spec)(wav_path) | |
except Exception as e: | |
return None, f"{e}" | |
outputs = [] | |
all_files = os.listdir(folder_path) | |
for file_name in all_files: | |
if file_name.lower().endswith(".jpg"): | |
file_path = os.path.join(folder_path, file_name) | |
input = embed_img(file_path) | |
output: torch.Tensor = model(input) | |
pred_id = torch.max(output.data, 1)[1] | |
outputs.append(int(pred_id)) | |
max_count_item = most_common_element(outputs) | |
shutil.rmtree(folder_path) | |
return os.path.basename(wav_path), TRANSLATE[CLASSES[max_count_item]] | |
if __name__ == "__main__": | |
warnings.filterwarnings("ignore") | |
models = get_modelist(assign_model="GoogleNet_mel") | |
examples = [] | |
example_wavs = find_wav_files() | |
for wav in example_wavs: | |
examples.append([wav, models[0]]) | |
with gr.Blocks() as demo: | |
gr.Interface( | |
fn=infer, | |
inputs=[ | |
gr.Audio(label="Upload a recording (>40dB)", type="filepath"), | |
gr.Dropdown(choices=models, label="Select a model", value=models[0]), | |
], | |
outputs=[ | |
gr.Textbox(label="Audio filename", show_copy_button=True), | |
gr.Textbox(label="Singing method recognition", show_copy_button=True), | |
], | |
examples=examples, | |
cache_examples=False, | |
allow_flagging="never", | |
title="It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.", | |
) | |
gr.Markdown( | |
""" | |
# Cite | |
```bibtex | |
@article{Zhou-2025, | |
author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, | |
title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, | |
journal = {Transactions of the International Society for Music Information Retrieval}, | |
volume = {8}, | |
number = {1}, | |
pages = {22--38}, | |
month = {Mar}, | |
year = {2025}, | |
url = {https://doi.org/10.5334/tismir.194}, | |
doi = {10.5334/tismir.194} | |
} | |
```""" | |
) | |
demo.launch() | |