File size: 3,754 Bytes
0974b80
 
0c98cfe
bce1f5b
0974b80
791c8de
0974b80
 
 
0c98cfe
 
0974b80
 
 
 
364d7af
 
 
 
 
8a61041
8441d3c
c4db698
 
272a9aa
0974b80
5955187
bce1f5b
0974b80
c8e8d6b
e2a08b5
 
 
7fca223
90da2fd
5955187
90da2fd
0974b80
 
90da2fd
0c98cfe
90da2fd
 
 
 
 
 
 
 
 
 
0974b80
0c98cfe
0974b80
2dc6bf4
 
0974b80
 
8441d3c
7107507
8441d3c
2dc6bf4
 
 
 
8441d3c
2dc6bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0974b80
 
 
2dc6bf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import torch
from sentence_transformers import SentenceTransformer, util
#from spellchecker import SpellChecker
import pickle
import re

# Load the pre-trained SentenceTransformer model
model = SentenceTransformer('neuml/pubmedbert-base-embeddings')

# Load stored data
with open("embeddings_1.pkl", "rb") as fIn:
    stored_data = pickle.load(fIn)
    stored_embeddings = stored_data["embeddings"]

def validate_input(input_string):
    # Regular expression pattern to match letters and numbers, or letters only
    pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$'
    
    # Check if input contains at least one non-numeric character
    if re.match(pattern, input_string) or input_string.isdigit():
        return True
    else:
        return False

# Define the function for mapping code
def mapping_code(user_input):

    emb1 = model.encode(user_input.lower())
    similarities = []
    for sentence in stored_embeddings:
        similarity = util.cos_sim(sentence, emb1)
        similarities.append(similarity)

    # Filter results with similarity scores above 0.70
    result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities)]

    # Sort results by similarity scores
    result.sort(key=lambda x: x[2], reverse=True)

    num_results = min(5, len(result))

    # Return top 5 entries with 'code', 'description', and 'similarity_score'
    top_5_results = []
    if num_results > 0:
        for i in range(num_results):
            code, description, similarity_score = result[i]
            top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
    else:
        top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0})

    return top_5_results

# Streamlit frontend interface
import streamlit as st

def main():
    st.title("CPT Description Mapping")
    st.markdown("<font color='blue'>**💡 Please enter the input CPT description with specific available  details for best results.**</font>", unsafe_allow_html=True)

    st.markdown("<font color='blue'>**💡 Note:** Please note that the similarity scores of each code are the calculated based on language module matching and the top 5 codes descriptions results should be verified with CPT description by the user.</font>", unsafe_allow_html=True)

    # user_slider_input_number = st.sidebar.slider('Select similarity threshold', 0.0, 1.0, 0.7, 0.01, key='slider1', help='Adjust the similarity threshold')

    # Input text box for user input
    user_input = st.text_input("Enter CPT description:", placeholder="Please enter the input CPT description with specific available  details for best results.")

    # Button to trigger mapping
    if st.button("Map"):
        if not user_input.strip():  # Check if input is empty or contains only whitespace
            st.error("Input box cannot be empty.")
        elif validate_input(user_input):
            st.warning("Please input correct description containing only letters and numbers, or letters only.")
        else:
            st.write("Please wait for a moment .... ")
            # Call backend function to get mapping results
            try:
                mapping_results = mapping_code(user_input)  # user_slider_input_number
                # Display top 5 similar sentences
                st.write("Top 5 similar sentences:")
                for i, result in enumerate(mapping_results, 1):
                    st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}")
            except ValueError as e:
                st.error(str(e))

if __name__ == "__main__":
    main()