Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
description = """ | |
<p> | |
<center> | |
This bot was trained on a dataset of 1000 movie reviews from IMDB. It can suggest movies similar to the one you liked! | |
<img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/> | |
</center> | |
</p> | |
""" | |
model = pipeline("text-generation", model="charoori/llm4movies") | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
base_model_id = "mistralai/Mistral-7B-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model_id, | |
add_bos_token=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained("charoori/llm4movies") | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
# model_input = tokenizer(eval_prompt, return_tensors="pt") | |
history = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(model.generate(**bot_input_ids, max_new_tokens=256, repetition_penalty=1.15)[0], skip_special_tokens=True) | |
# response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
#print('decoded_response-->>'+str(response)) | |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
#print('response-->>'+str(response)) | |
return response, history | |
interface = gr.Interface( | |
fn=predict, | |
title = "Find your next movie!", | |
inputs="textbox", | |
outputs="text", | |
description=description, | |
examples=[["I liked the movie Matrix because it was very interesting and had a great story. Suggest something similar"]] | |
) | |
interface.launch() | |