charulp2499's picture
Upload 9 files
a7954c9 verified
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
# %matplotlib inline
import tensorflow
print (tensorflow.__version__)
st.header("Welcome to the Generative Playground")
from tensorflow.keras.datasets import mnist,cifar10
option = st.selectbox(
"Which model would you like to get prediction with?",
("None","Auto-Regressor", "Auto-Encoder", "Diffusion-Model","Other"))
st.write("You selected:", option)
if option == "None":
st.write("Please Select the model to get the fun prediction.... :)")
if option == "Auto-Encoder":
st.write("It is under development")
st.write("Stay tune... Comming soon... :)")
if option == "Other":
st.write("Stay tune... Updating soon... :)")
if option == "Diffusion-Model":
st.write("It is under development")
st.write("Stay tune... Comming soon... :)")
if option == "Auto-Regressor":
if st.button("Run"):
st.write("Running Auto-Regressor")
st.write("trained on --> cifar-10 dataset, RTX-GPU's, 50-epochs")
st.write("This is trail model, updated version will be updated consicutively.")
(trainX, trainy), (testX, testy) = cifar10.load_data()
print('Training data shapes: X=%s, y=%s' % (trainX.shape, trainy.shape))
print('Testing data shapes: X=%s, y=%s' % (testX.shape, testy.shape))
for k in range(4):
fig = plt.figure(figsize=(9,6))
for j in range(9):
i = np.random.randint(0, 10000)
plt.subplot(990 + 1 + j)
plt.imshow(trainX[i], cmap='gray_r')
# st.pyplot(fig)
plt.axis('off')
#plt.title(trainy[i])
plt.show()
st.pyplot(fig)
# asdfaf
trainX = np.where(trainX < (0.33 * 256), 0, 1)
train_data = trainX.astype(np.float32)
testX = np.where(testX < (0.33 * 256), 0, 1)
test_data = testX.astype(np.float32)
train_data = np.reshape(train_data, (50000, 32, 32, 3))
test_data = np.reshape(test_data, (10000, 32, 32, 3))
print (train_data.shape, test_data.shape)
import tensorflow
class PixelConvLayer(tensorflow.keras.layers.Layer):
def __init__(self, mask_type, **kwargs):
super(PixelConvLayer, self).__init__()
self.mask_type = mask_type
self.conv = tensorflow.keras.layers.Conv2D(**kwargs)
def build(self, input_shape):
# Build the conv2d layer to initialize kernel variables
self.conv.build(input_shape)
# Use the initialized kernel to create the mask
kernel_shape = self.conv.kernel.get_shape()
self.mask = np.zeros(shape=kernel_shape)
self.mask[: kernel_shape[0] // 2, ...] = 1.0
self.mask[kernel_shape[0] // 2, : kernel_shape[1] // 2, ...] = 1.0
if self.mask_type == "B":
self.mask[kernel_shape[0] // 2, kernel_shape[1] // 2, ...] = 1.0
def call(self, inputs):
self.conv.kernel.assign(self.conv.kernel * self.mask)
return self.conv(inputs)
# Next, we build our residual block layer.
# This is just a normal residual block, but based on the PixelConvLayer.
class ResidualBlock(tensorflow.keras.layers.Layer):
def __init__(self, filters, **kwargs):
super(ResidualBlock, self).__init__(**kwargs)
self.conv1 = tensorflow.keras.layers.Conv2D(
filters=filters, kernel_size=1, activation="relu"
)
self.pixel_conv = PixelConvLayer(
mask_type="B",
filters=filters // 2,
kernel_size=3,
activation="relu",
padding="same",
)
self.conv2 = tensorflow.keras.layers.Conv2D(
filters=filters, kernel_size=1, activation="relu"
)
def call(self, inputs):
x = self.conv1(inputs)
x = self.pixel_conv(x)
x = self.conv2(x)
return tensorflow.keras.layers.add([inputs, x])
inputs = tensorflow.keras.Input(shape=(32,32,3))
x = PixelConvLayer(
mask_type="A", filters=128, kernel_size=7, activation="relu", padding="same"
)(inputs)
for _ in range(5):
x = ResidualBlock(filters=128)(x)
for _ in range(2):
x = PixelConvLayer(
mask_type="B",
filters=128,
kernel_size=1,
strides=1,
activation="relu",
padding="valid",
)(x)
out = tensorflow.keras.layers.Conv2D(
filters=3, kernel_size=1, strides=1, activation="sigmoid", padding="valid"
)(x)
pixel_cnn = tensorflow.keras.Model(inputs, out)
pixel_cnn.summary()
adam = tensorflow.keras.optimizers.Adam(learning_rate=0.0005)
pixel_cnn.compile(optimizer=adam, loss="binary_crossentropy")
# %%
import os
checkpoint_path = "training_1/cp.ckpt"
# checkpoint_path = "training_1/cp.weights.h5"
checkpoint_dir = os.path.dirname(checkpoint_path)
pixel_cnn.load_weights(checkpoint_path)
# %% [markdown]
# # Display Results 81 images
# %%
# from IPython.display import Image, display
from tqdm import tqdm
# Create an empty array of pixels.
batch = 1
pixels = np.zeros(shape=(batch,) + (pixel_cnn.input_shape)[1:])
batch, rows, cols, channels = pixels.shape
print(pixels.shape)
import time
# progress_text = "Operation in progress. Please wait."
# my_bar = st.progress(0, progress_text)
st.caption("Generating..... pls.. wait.. :)")
my_bar = st.progress(0)
# Iterate over the pixels because generation has to be done sequentially pixel by pixel.
for row in tqdm(range(rows)):
for col in range(cols):
for channel in range(channels):
time.sleep(0.01)
# Feed the whole array and retrieving the pixel value probabilities for the next
# pixel.
probs = pixel_cnn.predict(pixels)[:, row, col, channel]
# Use the probabilities to pick pixel values and append the values to the image
# frame.
pixels[:, row, col, channel] = tensorflow.math.ceil(
probs - tensorflow.random.uniform(probs.shape)
)
my_bar.progress(int(row*3.125))
# if row<rows/2:
# my_bar.progress((rows+1)*2)
# else:
# my_bar.progress(row+51)
my_bar.progress(100)
time.sleep(1)
from PIL import Image
# figout = plt.figure(figsize=(9,6))
# st.image(Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB').show(),caption="image")
# Convert the generated pixel array to an image
generated_image = Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB')
# Display the image using Streamlit
st.image(generated_image, caption="Generated Image")
# counter = 0
# for i in range(4):
# figout = plt.figure(figsize=(9,6))
# for j in range(9):
# plt.subplot(990 + 1 + j)
# plt.imshow(pixels[counter,:,:,0])#, cmap='gray_r')
# counter += 1
# plt.axis('off')
# plt.show()
# st.pyplot(figout)
# %%
# else:
# st.write("Not Available")