Spaces:
Runtime error
Runtime error
# Get Started | |
## 1.Installation | |
Step1. Install YOLOX. | |
```shell | |
git clone [email protected]:Megvii-BaseDetection/YOLOX.git | |
cd YOLOX | |
pip3 install -U pip && pip3 install -r requirements.txt | |
pip3 install -v -e . # or python3 setup.py develop | |
``` | |
Step2. Install [pycocotools](https://github.com/cocodataset/cocoapi). | |
```shell | |
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' | |
``` | |
## 2.Demo | |
Step1. Download a pretrained model from the benchmark table. | |
Step2. Use either -n or -f to specify your detector's config. For example: | |
```shell | |
python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] | |
``` | |
or | |
```shell | |
python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] | |
``` | |
Demo for video: | |
```shell | |
python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] | |
``` | |
## 3.Reproduce our results on COCO | |
Step1. Prepare COCO dataset | |
```shell | |
cd <YOLOX_HOME> | |
ln -s /path/to/your/COCO ./datasets/COCO | |
``` | |
Step2. Reproduce our results on COCO by specifying -n: | |
```shell | |
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache] | |
yolox-m | |
yolox-l | |
yolox-x | |
``` | |
* -d: number of gpu devices | |
* -b: total batch size, the recommended number for -b is num-gpu * 8 | |
* --fp16: mixed precision training | |
* --cache: caching imgs into RAM to accelarate training, which need large system RAM. | |
**Weights & Biases for Logging** | |
To use W&B for logging, install wandb in your environment and log in to your W&B account using | |
```shell | |
pip install wandb | |
wandb login | |
``` | |
Log in to your W&B account | |
To start logging metrics to W&B during training add the flag `--logger` to the previous command and use the prefix "wandb-" to specify arguments for initializing the wandb run. | |
```shell | |
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache] --logger wandb wandb-project <project name> | |
yolox-m | |
yolox-l | |
yolox-x | |
``` | |
More WandbLogger arguments include | |
```shell | |
python tools/train.py .... --logger wandb wandb-project <project-name> \ | |
wandb-name <run-name> \ | |
wandb-id <run-id> \ | |
wandb-save_dir <save-dir> \ | |
wandb-num_eval_images <num-images> \ | |
wandb-log_checkpoints <bool> | |
``` | |
More information available [here](https://docs.wandb.ai/guides/integrations/other/yolox). | |
**Multi Machine Training** | |
We also support multi-nodes training. Just add the following args: | |
* --num\_machines: num of your total training nodes | |
* --machine\_rank: specify the rank of each node | |
When using -f, the above commands are equivalent to: | |
```shell | |
python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o [--cache] | |
exps/default/yolox-m.py | |
exps/default/yolox-l.py | |
exps/default/yolox-x.py | |
``` | |
## 4.Evaluation | |
We support batch testing for fast evaluation: | |
```shell | |
python tools/eval.py -n yolox-s -c yolox_s.pth -b 64 -d 8 --conf 0.001 [--fp16] [--fuse] | |
yolox-m | |
yolox-l | |
yolox-x | |
``` | |
* --fuse: fuse conv and bn | |
* -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used. | |
* -b: total batch size across on all GPUs | |
To reproduce speed test, we use the following command: | |
```shell | |
python tools/eval.py -n yolox-s -c yolox_s.pth -b 1 -d 1 --conf 0.001 --fp16 --fuse | |
yolox-m | |
yolox-l | |
yolox-x | |
``` | |