Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline | |
import os | |
import zipfile | |
import shutil | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay | |
from PIL import Image | |
import tempfile | |
import numpy as np | |
import urllib.request | |
MODEL_NAME = "cmckinle/sdxl-flux-detector" | |
LABELS = ["AI", "Real"] | |
class AIDetector: | |
def __init__(self): | |
self.pipe = pipeline("image-classification", MODEL_NAME) | |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) | |
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) | |
def softmax(vector): | |
e = np.exp(vector - np.max(vector)) | |
return e / e.sum() | |
def predict(self, image): | |
inputs = self.feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
logits = outputs.logits | |
probabilities = self.softmax(logits.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = LABELS[prediction] | |
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])} | |
return label, results | |
def process_zip(zip_file): | |
temp_dir = tempfile.mkdtemp() | |
with zipfile.ZipFile(zip_file.name, 'r') as z: | |
z.extractall(temp_dir) | |
labels, preds, images = [], [], [] | |
detector = AIDetector() | |
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]: | |
folder_path = os.path.join(temp_dir, folder_name) | |
if not os.path.exists(folder_path): | |
print(f"Folder not found: {folder_path}") | |
continue | |
for img_name in os.listdir(folder_path): | |
img_path = os.path.join(folder_path, img_name) | |
try: | |
img = Image.open(img_path).convert("RGB") | |
_, prediction = detector.predict(img) | |
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1 | |
preds.append(pred_label) | |
labels.append(ground_truth_label) | |
images.append(img_name) | |
except Exception as e: | |
print(f"Error processing image {img_name}: {e}") | |
shutil.rmtree(temp_dir) | |
return evaluate_model(labels, preds) | |
def evaluate_model(labels, preds): | |
cm = confusion_matrix(labels, preds) | |
accuracy = accuracy_score(labels, preds) | |
roc_score = roc_auc_score(labels, preds) | |
report = classification_report(labels, preds) | |
fpr, tpr, _ = roc_curve(labels, preds) | |
roc_auc = auc(fpr, tpr) | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6)) | |
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1) | |
ax1.set_title("Confusion Matrix") | |
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--') | |
ax2.set_xlim([0.0, 1.0]) | |
ax2.set_ylim([0.0, 1.05]) | |
ax2.set_xlabel('False Positive Rate') | |
ax2.set_ylabel('True Positive Rate') | |
ax2.set_title('ROC Curve') | |
ax2.legend(loc="lower right") | |
plt.tight_layout() | |
return accuracy, roc_score, report, fig | |
def load_url(url): | |
try: | |
urllib.request.urlretrieve(url, "temp_image.png") | |
image = Image.open("temp_image.png") | |
message = "Image Loaded" | |
except Exception as e: | |
image = None | |
message = f"Image not Found<br>Error: {e}" | |
return image, message | |
detector = AIDetector() | |
def create_gradio_interface(): | |
with gr.Blocks() as app: | |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""") | |
with gr.Tabs(): | |
with gr.Tab("Single Image Detection"): | |
with gr.Column(): | |
inp = gr.Image(type='pil') | |
in_url = gr.Textbox(label="Image URL") | |
with gr.Row(): | |
load_btn = gr.Button("Load URL") | |
btn = gr.Button("Detect AI") | |
message = gr.HTML() | |
with gr.Group(): | |
with gr.Box(): | |
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""") | |
output_html = gr.HTML() | |
output_label = gr.Label(label="Output") | |
with gr.Tab("Batch Image Processing"): | |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)") | |
batch_btn = gr.Button("Process Batch") | |
with gr.Group(): | |
gr.Markdown(f"### Results for {MODEL_NAME}") | |
output_acc = gr.Label(label="Accuracy") | |
output_roc = gr.Label(label="ROC Score") | |
output_report = gr.Textbox(label="Classification Report", lines=10) | |
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve") | |
load_btn.click(load_url, in_url, [inp, message]) | |
btn.click( | |
lambda img: detector.predict(img), | |
inp, | |
[output_html, output_label] | |
) | |
batch_btn.click( | |
process_zip, | |
zip_file, | |
[output_acc, output_roc, output_report, output_plots] | |
) | |
return app | |
if __name__ == "__main__": | |
app = create_gradio_interface() | |
app.launch(show_api=False, max_threads=24) |