Spaces:
Running
Running
from sentence_transformers import SentenceTransformer | |
import gradio as gr | |
import update_packages | |
import numpy as np | |
# Load the pre-trained model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Define the function to process requests | |
def generate_embeddings(chunks): | |
embeddings = embedding_model.encode(chunks, convert_to_tensor=False) | |
shape = embeddings.shape | |
return embeddings.tolist(), shape # Convert numpy array to list | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=generate_embeddings, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text chunks here...", type="list"), | |
outputs=[gr.JSON(label="Embeddings"), gr.Label(label="Shape")], | |
title="Sentence Transformer Embeddings", | |
description="Generate embeddings for input text chunks." | |
) | |
# Launch the Gradio app | |
interface.launch() | |