Spaces:
Running
Running
File size: 30,107 Bytes
0244d3c 6934db6 c28bdaa d8a969c 527fd08 0e1182d a83f370 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 0244d3c 527fd08 0e1182d 0244d3c d8a969c 181b7be c28bdaa 181b7be a83f370 c28bdaa a83f370 0e1182d c28bdaa 527fd08 0e1182d 181b7be 527fd08 0e1182d a83f370 527fd08 181b7be 0e1182d a83f370 0244d3c a83f370 527fd08 0e1182d 181b7be 527fd08 181b7be a83f370 0244d3c 181b7be c28bdaa 181b7be c28bdaa 181b7be c28bdaa 181b7be c28bdaa 181b7be 7e141c2 c28bdaa 181b7be 0e1182d a83f370 0e1182d 181b7be 0244d3c 527fd08 0e1182d 0244d3c 0e1182d 0244d3c 181b7be 0e1182d 181b7be 0e1182d 181b7be 0244d3c 7e141c2 a83f370 181b7be 0244d3c 0e1182d 0244d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy import stats
from scipy.stats import entropy
from scipy.signal import correlate
import networkx as nx
from matplotlib.widgets import Cursor
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
# Try to parse as JSON first
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
try:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
logger.debug("Successfully parsed as Python literal")
# Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
def dict_to_json(obj):
if isinstance(obj, dict):
return {str(k): dict_to_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [dict_to_json(item) for item in obj]
else:
return obj
converted_data = dict_to_json(data)
logger.debug("Converted to JSON-compatible format")
return converted_data
except (SyntaxError, ValueError) as e:
logger.error("Python literal parsing failed: %s", str(e))
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")
# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
if value is None:
return None
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return None
if isinstance(value, (int, float)):
return float(value)
return None
# Function to process and visualize log probs with multiple analyses
def visualize_logprobs(json_input, prob_filter=-float('inf')):
try:
# Parse the input (handles both JSON and Python dictionaries)
data = parse_input(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and "content" in data:
content = data["content"]
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens, log probs, and top alternatives, skipping None or non-finite values
tokens = []
logprobs = []
top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
token_types = [] # Simplified token type categorization
for entry in content:
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter:
tokens.append(entry["token"])
logprobs.append(logprob)
# Categorize token type (simple heuristic)
token = entry["token"].lower().strip()
if token in ["the", "a", "an"]: token_types.append("article")
elif token in ["is", "are", "was", "were"]: token_types.append("verb")
elif token in ["top", "so", "need", "figure"]: token_types.append("noun")
else: token_types.append("other")
# Get top_logprobs, default to empty dict if None
top_probs = entry.get("top_logprobs", {})
# Ensure all values in top_logprobs are floats
finite_top_probs = {}
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs[key] = float_value
# Get the top 3 log probs (including the selected token)
all_probs = {entry["token"]: logprob} # Add the selected token's logprob
all_probs.update(finite_top_probs) # Add alternatives
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
top_alternatives.append(top_3)
else:
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
# If no valid data after filtering, return error messages
if not logprobs:
return "No finite log probabilities to visualize after filtering.", None, None, None, None, None, None, None, None, None, None
# 1. Main Log Probability Plot (with click for tokens)
fig_main, ax_main = plt.subplots(figsize=(10, 5))
scatter = ax_main.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Selected Token")[0]
ax_main.set_title("Log Probabilities of Generated Tokens")
ax_main.set_xlabel("Token Position")
ax_main.set_ylabel("Log Probability")
ax_main.grid(True)
ax_main.set_xticks([]) # Hide X-axis labels by default
# Add click functionality to show token
token_annotations = []
for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
annotation = ax_main.annotate('', (x, y), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', alpha=0.8), visible=False)
token_annotations.append(annotation)
def on_click(event):
if event.inaxes == ax_main:
for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
contains, _ = scatter.contains(event)
if contains and abs(event.xdata - x) < 0.5 and abs(event.ydata - y) < 0.5:
token_annotations[i].set_text(tokens[i])
token_annotations[i].set_visible(True)
fig_main.canvas.draw_idle()
else:
token_annotations[i].set_visible(False)
fig_main.canvas.draw_idle()
fig_main.canvas.mpl_connect('button_press_event', on_click)
# Save main plot
buf_main = io.BytesIO()
plt.savefig(buf_main, format="png", bbox_inches="tight", dpi=100)
buf_main.seek(0)
plt.close(fig_main)
img_main_bytes = buf_main.getvalue()
img_main_base64 = base64.b64encode(img_main_bytes).decode("utf-8")
img_main_html = f'<img src="data:image/png;base64,{img_main_base64}" style="max-width: 100%; height: auto;">'
# 2. K-Means Clustering of Log Probabilities
kmeans = KMeans(n_clusters=3, random_state=42)
cluster_labels = kmeans.fit_predict(np.array(logprobs).reshape(-1, 1))
fig_cluster, ax_cluster = plt.subplots(figsize=(10, 5))
scatter = ax_cluster.scatter(range(len(logprobs)), logprobs, c=cluster_labels, cmap='viridis')
ax_cluster.set_title("K-Means Clustering of Log Probabilities")
ax_cluster.set_xlabel("Token Position")
ax_cluster.set_ylabel("Log Probability")
ax_cluster.grid(True)
plt.colorbar(scatter, ax=ax_cluster, label="Cluster")
buf_cluster = io.BytesIO()
plt.savefig(buf_cluster, format="png", bbox_inches="tight", dpi=100)
buf_cluster.seek(0)
plt.close(fig_cluster)
img_cluster_bytes = buf_cluster.getvalue()
img_cluster_base64 = base64.b64encode(img_cluster_bytes).decode("utf-8")
img_cluster_html = f'<img src="data:image/png;base64,{img_cluster_base64}" style="max-width: 100%; height: auto;">'
# 3. Probability Drop Analysis
drops = [logprobs[i+1] - logprobs[i] if i < len(logprobs)-1 else 0 for i in range(len(logprobs))]
fig_drops, ax_drops = plt.subplots(figsize=(10, 5))
ax_drops.bar(range(len(drops)), drops, color='red', alpha=0.5)
ax_drops.set_title("Significant Probability Drops")
ax_drops.set_xlabel("Token Position")
ax_drops.set_ylabel("Log Probability Drop")
ax_drops.grid(True)
buf_drops = io.BytesIO()
plt.savefig(buf_drops, format="png", bbox_inches="tight", dpi=100)
buf_drops.seek(0)
plt.close(fig_drops)
img_drops_bytes = buf_drops.getvalue()
img_drops_base64 = base64.b64encode(img_drops_bytes).decode("utf-8")
img_drops_html = f'<img src="data:image/png;base64,{img_drops_base64}" style="max-width: 100%; height: auto;">'
# 4. N-Gram Analysis (Bigrams for simplicity)
bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens)-1)]
bigram_probs = [logprobs[i] + logprobs[i+1] for i in range(len(tokens)-1)]
fig_ngram, ax_ngram = plt.subplots(figsize=(10, 5))
ax_ngram.bar(range(len(bigrams)), bigram_probs, color='green')
ax_ngram.set_title("N-Gram (Bigrams) Probability Sum")
ax_ngram.set_xlabel("Bigram Position")
ax_ngram.set_ylabel("Sum of Log Probabilities")
ax_ngram.set_xticks(range(len(bigrams)))
ax_ngram.set_xticklabels([f"{b[0]}->{b[1]}" for b in bigrams], rotation=45, ha="right")
ax_ngram.grid(True)
buf_ngram = io.BytesIO()
plt.savefig(buf_ngram, format="png", bbox_inches="tight", dpi=100)
buf_ngram.seek(0)
plt.close(fig_ngram)
img_ngram_bytes = buf_ngram.getvalue()
img_ngram_base64 = base64.b64encode(img_ngram_bytes).decode("utf-8")
img_ngram_html = f'<img src="data:image/png;base64,{img_ngram_base64}" style="max-width: 100%; height: auto;">'
# 5. Markov Chain Modeling (Simple Graph)
G = nx.DiGraph()
for i in range(len(tokens)-1):
G.add_edge(tokens[i], tokens[i+1], weight=logprobs[i+1] - logprobs[i])
fig_markov, ax_markov = plt.subplots(figsize=(10, 5))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500, edge_color='gray', width=1, ax=ax_markov)
ax_markov.set_title("Markov Chain of Token Transitions")
buf_markov = io.BytesIO()
plt.savefig(buf_markov, format="png", bbox_inches="tight", dpi=100)
buf_markov.seek(0)
plt.close(fig_markov)
img_markov_bytes = buf_markov.getvalue()
img_markov_base64 = base64.b64encode(img_markov_bytes).decode("utf-8")
img_markov_html = f'<img src="data:image/png;base64,{img_markov_base64}" style="max-width: 100%; height: auto;">'
# 6. Anomaly Detection (Outlier Detection with Z-Score)
z_scores = np.abs(stats.zscore(logprobs))
outliers = z_scores > 2 # Threshold for outliers
fig_anomaly, ax_anomaly = plt.subplots(figsize=(10, 5))
ax_anomaly.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b")
ax_anomaly.plot(np.where(outliers)[0], [logprobs[i] for i in np.where(outliers)[0]], "ro", label="Outliers")
ax_anomaly.set_title("Log Probabilities with Outliers")
ax_anomaly.set_xlabel("Token Position")
ax_anomaly.set_ylabel("Log Probability")
ax_anomaly.grid(True)
ax_anomaly.legend()
ax_anomaly.set_xticks([]) # Hide X-axis labels
buf_anomaly = io.BytesIO()
plt.savefig(buf_anomaly, format="png", bbox_inches="tight", dpi=100)
buf_anomaly.seek(0)
plt.close(fig_anomaly)
img_anomaly_bytes = buf_anomaly.getvalue()
img_anomaly_base64 = base64.b64encode(img_anomaly_bytes).decode("utf-8")
img_anomaly_html = f'<img src="data:image/png;base64,{img_anomaly_base64}" style="max-width: 100%; height: auto;">'
# 7. Autocorrelation
autocorr = correlate(logprobs, logprobs, mode='full')
autocorr = autocorr[len(autocorr)//2:] / len(logprobs) # Normalize
fig_autocorr, ax_autocorr = plt.subplots(figsize=(10, 5))
ax_autocorr.plot(range(len(autocorr)), autocorr, color='purple')
ax_autocorr.set_title("Autocorrelation of Log Probabilities")
ax_autocorr.set_xlabel("Lag")
ax_autocorr.set_ylabel("Autocorrelation")
ax_autocorr.grid(True)
buf_autocorr = io.BytesIO()
plt.savefig(buf_autocorr, format="png", bbox_inches="tight", dpi=100)
buf_autocorr.seek(0)
plt.close(fig_autocorr)
img_autocorr_bytes = buf_autocorr.getvalue()
img_autocorr_base64 = base64.b64encode(img_autocorr_bytes).decode("utf-8")
img_autocorr_html = f'<img src="data:image/png;base64,{img_autocorr_base64}" style="max-width: 100%; height: auto;">'
# 8. Smoothing (Moving Average)
window_size = 3
moving_avg = np.convolve(logprobs, np.ones(window_size)/window_size, mode='valid')
fig_smoothing, ax_smoothing = plt.subplots(figsize=(10, 5))
ax_smoothing.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Original")
ax_smoothing.plot(range(window_size-1, len(logprobs)), moving_avg, color="orange", label="Moving Average")
ax_smoothing.set_title("Log Probabilities with Moving Average")
ax_smoothing.set_xlabel("Token Position")
ax_smoothing.set_ylabel("Log Probability")
ax_smoothing.grid(True)
ax_smoothing.legend()
ax_smoothing.set_xticks([]) # Hide X-axis labels
buf_smoothing = io.BytesIO()
plt.savefig(buf_smoothing, format="png", bbox_inches="tight", dpi=100)
buf_smoothing.seek(0)
plt.close(fig_smoothing)
img_smoothing_bytes = buf_smoothing.getvalue()
img_smoothing_base64 = base64.b64encode(img_smoothing_bytes).decode("utf-8")
img_smoothing_html = f'<img src="data:image/png;base64,{img_smoothing_base64}" style="max-width: 100%; height: auto;">'
# 9. Uncertainty Propagation (Variance of Top Logprobs)
variances = []
for probs in top_alternatives:
if len(probs) > 1:
values = [p[1] for p in probs]
variances.append(np.var(values))
else:
variances.append(0)
fig_uncertainty, ax_uncertainty = plt.subplots(figsize=(10, 5))
ax_uncertainty.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Log Prob")
ax_uncertainty.fill_between(range(len(logprobs)), [lp - v for lp, v in zip(logprobs, variances)],
[lp + v for lp, v in zip(logprobs, variances)], color='gray', alpha=0.3, label="Uncertainty")
ax_uncertainty.set_title("Log Probabilities with Uncertainty Propagation")
ax_uncertainty.set_xlabel("Token Position")
ax_uncertainty.set_ylabel("Log Probability")
ax_uncertainty.grid(True)
ax_uncertainty.legend()
ax_uncertainty.set_xticks([]) # Hide X-axis labels
buf_uncertainty = io.BytesIO()
plt.savefig(buf_uncertainty, format="png", bbox_inches="tight", dpi=100)
buf_uncertainty.seek(0)
plt.close(fig_uncertainty)
img_uncertainty_bytes = buf_uncertainty.getvalue()
img_uncertainty_base64 = base64.b64encode(img_uncertainty_bytes).decode("utf-8")
img_uncertainty_html = f'<img src="data:image/png;base64,{img_uncertainty_base64}" style="max-width: 100%; height: auto;">'
# 10. Correlation Heatmap
corr_matrix = np.corrcoef(logprobs, rowvar=False)
fig_corr, ax_corr = plt.subplots(figsize=(10, 5))
im = ax_corr.imshow(corr_matrix, cmap='coolwarm', interpolation='nearest')
ax_corr.set_title("Correlation of Log Probabilities Across Positions")
ax_corr.set_xlabel("Token Position")
ax_corr.set_ylabel("Token Position")
plt.colorbar(im, ax=ax_corr, label="Correlation")
buf_corr = io.BytesIO()
plt.savefig(buf_corr, format="png", bbox_inches="tight", dpi=100)
buf_corr.seek(0)
plt.close(fig_corr)
img_corr_bytes = buf_corr.getvalue()
img_corr_base64 = base64.b64encode(img_corr_bytes).decode("utf-8")
img_corr_html = f'<img src="data:image/png;base64,{img_corr_base64}" style="max-width: 100%; height: auto;">'
# 11. Token Type Correlation
type_probs = {t: [] for t in set(token_types)}
for t, p in zip(token_types, logprobs):
type_probs[t].append(p)
fig_type, ax_type = plt.subplots(figsize=(10, 5))
for t in type_probs:
ax_type.bar(t, np.mean(type_probs[t]), yerr=np.std(type_probs[t]), capsize=5, label=t)
ax_type.set_title("Average Log Probability by Token Type")
ax_type.set_xlabel("Token Type")
ax_type.set_ylabel("Average Log Probability")
ax_type.grid(True)
ax_type.legend()
buf_type = io.BytesIO()
plt.savefig(buf_type, format="png", bbox_inches="tight", dpi=100)
buf_type.seek(0)
plt.close(fig_type)
img_type_bytes = buf_type.getvalue()
img_type_base64 = base64.b64encode(img_type_bytes).decode("utf-8")
img_type_html = f'<img src="data:image/png;base64,{img_type_base64}" style="max-width: 100%; height: auto;">'
# 12. Token Embedding Similarity vs. Probability (Simulated)
# Simulate embedding distances (e.g., cosine similarity) as random values for demonstration
simulated_embeddings = np.random.rand(len(tokens), 2) # 2D embeddings
fig_embed, ax_embed = plt.subplots(figsize=(10, 5))
ax_embed.scatter(simulated_embeddings[:, 0], simulated_embeddings[:, 1], c=logprobs, cmap='viridis')
ax_embed.set_title("Token Embedding Similarity vs. Log Probability")
ax_embed.set_xlabel("Embedding Dimension 1")
ax_embed.set_ylabel("Embedding Dimension 2")
plt.colorbar(ax_embed.collections[0], ax=ax_embed, label="Log Probability")
buf_embed = io.BytesIO()
plt.savefig(buf_embed, format="png", bbox_inches="tight", dpi=100)
buf_embed.seek(0)
plt.close(fig_embed)
img_embed_bytes = buf_embed.getvalue()
img_embed_base64 = base64.b64encode(img_embed_bytes).decode("utf-8")
img_embed_html = f'<img src="data:image/png;base64,{img_embed_base64}" style="max-width: 100%; height: auto;">'
# 13. Bayesian Inference (Simplified as Inferred Probabilities)
# Simulate inferred probabilities based on top_logprobs entropy
entropies = [entropy([p[1] for p in probs], base=2) for probs in top_alternatives if len(probs) > 1]
fig_bayesian, ax_bayesian = plt.subplots(figsize=(10, 5))
ax_bayesian.bar(range(len(entropies)), entropies, color='orange')
ax_bayesian.set_title("Bayesian Inferred Uncertainty (Entropy)")
ax_bayesian.set_xlabel("Token Position")
ax_bayesian.set_ylabel("Entropy")
ax_bayesian.grid(True)
buf_bayesian = io.BytesIO()
plt.savefig(buf_bayesian, format="png", bbox_inches="tight", dpi=100)
buf_bayesian.seek(0)
plt.close(fig_bayesian)
img_bayesian_bytes = buf_bayesian.getvalue()
img_bayesian_base64 = base64.b64encode(img_bayesian_bytes).decode("utf-8")
img_bayesian_html = f'<img src="data:image/png;base64,{img_bayesian_base64}" style="max-width: 100%; height: auto;">'
# 14. Graph-Based Analysis
G = nx.DiGraph()
for i in range(len(tokens)-1):
G.add_edge(tokens[i], tokens[i+1], weight=logprobs[i+1] - logprobs[i])
fig_graph, ax_graph = plt.subplots(figsize=(10, 5))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500, edge_color='gray', width=1, ax=ax_graph)
ax_graph.set_title("Graph of Token Transitions")
buf_graph = io.BytesIO()
plt.savefig(buf_graph, format="png", bbox_inches="tight", dpi=100)
buf_graph.seek(0)
plt.close(fig_graph)
img_graph_bytes = buf_graph.getvalue()
img_graph_base64 = base64.b64encode(img_graph_bytes).decode("utf-8")
img_graph_html = f'<img src="data:image/png;base64,{img_graph_base64}" style="max-width: 100%; height: auto;">'
# 15. Dimensionality Reduction (t-SNE)
features = np.array([logprobs + [p[1] for p in alts[:2]] for logprobs, alts in zip([logprobs], top_alternatives)])
tsne = TSNE(n_components=2, random_state=42)
tsne_result = tsne.fit_transform(features.T)
fig_tsne, ax_tsne = plt.subplots(figsize=(10, 5))
scatter = ax_tsne.scatter(tsne_result[:, 0], tsne_result[:, 1], c=logprobs, cmap='viridis')
ax_tsne.set_title("t-SNE of Log Probabilities and Top Alternatives")
ax_tsne.set_xlabel("t-SNE Dimension 1")
ax_tsne.set_ylabel("t-SNE Dimension 2")
plt.colorbar(scatter, ax=ax_tsne, label="Log Probability")
buf_tsne = io.BytesIO()
plt.savefig(buf_tsne, format="png", bbox_inches="tight", dpi=100)
buf_tsne.seek(0)
plt.close(fig_tsne)
img_tsne_bytes = buf_tsne.getvalue()
img_tsne_base64 = base64.b64encode(img_tsne_bytes).decode("utf-8")
img_tsne_html = f'<img src="data:image/png;base64,{img_tsne_base64}" style="max-width: 100%; height: auto;">'
# 16. Interactive Heatmap
fig_heatmap, ax_heatmap = plt.subplots(figsize=(10, 5))
im = ax_heatmap.imshow([logprobs], cmap='viridis', aspect='auto')
ax_heatmap.set_title("Interactive Heatmap of Log Probabilities")
ax_heatmap.set_xlabel("Token Position")
ax_heatmap.set_ylabel("Probability Level")
plt.colorbar(im, ax=ax_heatmap, label="Log Probability")
buf_heatmap = io.BytesIO()
plt.savefig(buf_heatmap, format="png", bbox_inches="tight", dpi=100)
buf_heatmap.seek(0)
plt.close(fig_heatmap)
img_heatmap_bytes = buf_heatmap.getvalue()
img_heatmap_base64 = base64.b64encode(img_heatmap_bytes).decode("utf-8")
img_heatmap_html = f'<img src="data:image/png;base64,{img_heatmap_base64}" style="max-width: 100%; height: auto;">'
# 17. Probability Distribution Plots (Box Plots for Top Logprobs)
all_top_probs = [p[1] for alts in top_alternatives for p in alts]
fig_dist, ax_dist = plt.subplots(figsize=(10, 5))
ax_dist.boxplot([logprobs] + [p[1] for alts in top_alternatives for p in alts[:2]], labels=["Selected"] + ["Alt1", "Alt2"])
ax_dist.set_title("Probability Distribution of Top Tokens")
ax_dist.set_xlabel("Token Type")
ax_dist.set_ylabel("Log Probability")
ax_dist.grid(True)
buf_dist = io.BytesIO()
plt.savefig(buf_dist, format="png", bbox_inches="tight", dpi=100)
buf_dist.seek(0)
plt.close(fig_dist)
img_dist_bytes = buf_dist.getvalue()
img_dist_base64 = base64.b64encode(img_dist_bytes).decode("utf-8")
img_dist_html = f'<img src="data:image/png;base64,{img_dist_base64}" style="max-width: 100%; height: auto;">'
# Create DataFrame for the table
table_data = []
for i, entry in enumerate(content):
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter and "top_logprobs" in entry and entry["top_logprobs"] is not None:
token = entry["token"]
top_logprobs = entry["top_logprobs"]
# Ensure all values in top_logprobs are floats
finite_top_logprobs = {}
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_logprobs[key] = float_value
# Extract top 3 alternatives from top_logprobs
top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in top_3:
row.append(f"{alt_token}: {alt_logprob:.4f}")
while len(row) < 5:
row.append("")
table_data.append(row)
df = (
pd.DataFrame(
table_data,
columns=[
"Token",
"Log Prob",
"Top 1 Alternative",
"Top 2 Alternative",
"Top 3 Alternative",
],
)
if table_data
else None
)
# Generate colored text
if logprobs:
min_logprob = min(logprobs)
max_logprob = max(logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(logprobs)
else:
normalized_probs = [
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No finite log probabilities to display."
# Top 3 Token Log Probabilities
alt_viz_html = ""
if logprobs and top_alternatives:
alt_viz_html = "<h3>Top 3 Token Log Probabilities</h3><ul>"
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
alt_viz_html += f"<li>Position {i} (Token: {token}):<br>"
for tok, prob in probs:
alt_viz_html += f"{tok}: {prob:.4f}<br>"
alt_viz_html += "</li>"
alt_viz_html += "</ul>"
return (img_main_html, df, colored_text_html, alt_viz_html, img_cluster_html, img_drops_html,
img_ngram_html, img_markov_html, img_anomaly_html, img_autocorr_html, img_smoothing_html,
img_uncertainty_html, img_corr_html, img_type_html, img_embed_html, img_bayesian_html,
img_graph_html, img_tsne_html, img_heatmap_html, img_dist_html)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (f"Error: {str(e)}", None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None)
# Gradio interface with dynamic filtering
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown(
"Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Use the filter to focus on specific log probability ranges."
)
with gr.Row():
json_input = gr.Textbox(
label="JSON Input",
lines=10,
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
)
prob_filter = gr.Slider(minimum=-float('inf'), maximum=0, value=-float('inf'), label="Log Probability Filter (≥)")
with gr.Row():
plot_output = gr.HTML(label="Log Probability Plot (Click for Tokens)")
cluster_output = gr.HTML(label="K-Means Clustering")
drops_output = gr.HTML(label="Probability Drops")
with gr.Row():
ngram_output = gr.HTML(label="N-Gram Analysis")
markov_output = gr.HTML(label="Markov Chain")
with gr.Row():
anomaly_output = gr.HTML(label="Anomaly Detection")
autocorr_output = gr.HTML(label="Autocorrelation")
with gr.Row():
smoothing_output = gr.HTML(label="Smoothing (Moving Average)")
uncertainty_output = gr.HTML(label="Uncertainty Propagation")
with gr.Row():
corr_output = gr.HTML(label="Correlation Heatmap")
type_output = gr.HTML(label="Token Type Correlation")
with gr.Row():
embed_output = gr.HTML(label="Embedding Similarity vs. Probability")
bayesian_output = gr.HTML(label="Bayesian Inference (Entropy)")
with gr.Row():
graph_output = gr.HTML(label="Graph of Token Transitions")
tsne_output = gr.HTML(label="t-SNE of Log Probabilities")
with gr.Row():
heatmap_output = gr.HTML(label="Interactive Heatmap")
dist_output = gr.HTML(label="Probability Distribution")
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities")
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=[json_input, prob_filter],
outputs=[
plot_output, table_output, text_output, alt_viz_output,
cluster_output, drops_output, ngram_output, markov_output,
anomaly_output, autocorr_output, smoothing_output, uncertainty_output,
corr_output, type_output, embed_output, bayesian_output,
graph_output, tsne_output, heatmap_output, dist_output
],
)
app.launch() |