File size: 15,051 Bytes
0244d3c
 
 
 
6934db6
 
c28bdaa
d8a969c
527fd08
0e1182d
cbaf223
 
0e1182d
527fd08
 
 
 
d8a969c
 
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
 
 
 
 
 
 
527fd08
 
 
d8a969c
527fd08
d8a969c
0244d3c
527fd08
 
 
 
 
 
 
 
 
 
 
 
 
 
cbaf223
 
0244d3c
d8a969c
 
 
 
181b7be
 
c28bdaa
 
 
 
181b7be
a83f370
c28bdaa
 
a83f370
c28bdaa
527fd08
0e1182d
181b7be
527fd08
a83f370
 
 
 
 
 
 
 
 
 
 
 
 
 
527fd08
 
181b7be
ccde0a2
 
cbaf223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1182d
cbaf223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1182d
cbaf223
 
 
 
 
 
ccde0a2
cbaf223
 
 
 
 
 
 
 
 
 
 
 
 
 
a83f370
cbaf223
0244d3c
cbaf223
527fd08
0e1182d
181b7be
 
527fd08
 
 
 
 
 
181b7be
a83f370
0244d3c
 
 
 
 
 
181b7be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbaf223
 
 
 
c28bdaa
cbaf223
c28bdaa
181b7be
cbaf223
181b7be
 
c28bdaa
cbaf223
181b7be
 
 
 
c28bdaa
cbaf223
181b7be
 
7e141c2
c28bdaa
181b7be
cbaf223
a83f370
cbaf223
 
 
 
a83f370
 
 
 
 
cbaf223
181b7be
0244d3c
527fd08
cbaf223
0244d3c
cbaf223
0244d3c
 
181b7be
cbaf223
181b7be
 
0e1182d
ccde0a2
 
 
 
 
 
 
 
cbaf223
 
ccde0a2
cbaf223
 
 
ccde0a2
cbaf223
 
 
ccde0a2
cbaf223
 
 
181b7be
0244d3c
 
 
cbaf223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0244d3c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy import stats

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
    logger.debug("Attempting to parse input: %s", json_input)
    try:
        # Try to parse as JSON first
        data = json.loads(json_input)
        logger.debug("Successfully parsed as JSON")
        return data
    except json.JSONDecodeError as e:
        logger.error("JSON parsing failed: %s", str(e))
        try:
            # If JSON fails, try to parse as Python literal (e.g., with single quotes)
            data = ast.literal_eval(json_input)
            logger.debug("Successfully parsed as Python literal")
            # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
            def dict_to_json(obj):
                if isinstance(obj, dict):
                    return {str(k): dict_to_json(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [dict_to_json(item) for item in obj]
                else:
                    return obj
            converted_data = dict_to_json(data)
            logger.debug("Converted to JSON-compatible format")
            return converted_data
        except (SyntaxError, ValueError) as e:
            logger.error("Python literal parsing failed: %s", str(e))
            raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")

# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
    if value is None:
        return None
    if isinstance(value, str):
        try:
            return float(value)
        except ValueError:
            logger.error("Failed to convert string '%s' to float", value)
            return None
    if isinstance(value, (int, float)):
        return float(value)
    return None

# Function to process and visualize log probs with interactive Plotly plots
def visualize_logprobs(json_input, prob_filter=-1e9, page_size=50, page=0):
    try:
        # Parse the input (handles both JSON and Python dictionaries)
        data = parse_input(json_input)
        
        # Ensure data is a list or dictionary with 'content'
        if isinstance(data, dict) and "content" in data:
            content = data["content"]
        elif isinstance(data, list):
            content = data
        else:
            raise ValueError("Input must be a list or dictionary with 'content' key")

        # Extract tokens, log probs, and top alternatives, skipping None or non-finite values
        tokens = []
        logprobs = []
        top_alternatives = []  # List to store top 3 log probs (selected token + 2 alternatives)
        for entry in content:
            logprob = ensure_float(entry.get("logprob", None))
            if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter:
                tokens.append(entry["token"])
                logprobs.append(logprob)
                # Get top_logprobs, default to empty dict if None
                top_probs = entry.get("top_logprobs", {})
                # Ensure all values in top_logprobs are floats
                finite_top_probs = {}
                for key, value in top_probs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_probs[key] = float_value
                # Get the top 3 log probs (including the selected token)
                all_probs = {entry["token"]: logprob}  # Add the selected token's logprob
                all_probs.update(finite_top_probs)  # Add alternatives
                sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
                top_3 = sorted_probs[:3]  # Top 3 log probs (highest to lowest)
                top_alternatives.append(top_3)
            else:
                logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))

        # Check if there's valid data after filtering
        if not logprobs or not tokens:
            return (gr.update(value="No finite log probabilities or tokens to visualize after filtering"), None, None, None, 1, 0)

        # Paginate data for large inputs
        total_pages = max(1, (len(logprobs) + page_size - 1) // page_size)
        start_idx = page * page_size
        end_idx = min((page + 1) * page_size, len(logprobs))
        paginated_tokens = tokens[start_idx:end_idx]
        paginated_logprobs = logprobs[start_idx:end_idx]
        paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []

        # 1. Main Log Probability Plot (Interactive Plotly)
        main_fig = go.Figure()
        main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
        main_fig.update_layout(
            title="Log Probabilities of Generated Tokens",
            xaxis_title="Token Position",
            yaxis_title="Log Probability",
            hovermode="closest",
            clickmode='event+select'
        )
        main_fig.update_traces(
            customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))],
            hovertemplate='<b>%{customdata}</b><extra></extra>'
        )

        # 2. Probability Drop Analysis (Interactive Plotly)
        if len(paginated_logprobs) < 2:
            drops_fig = go.Figure()
            drops_fig.add_trace(go.Bar(x=list(range(len(paginated_logprobs)-1)), y=[0], name='Drop', marker_color='red'))
        else:
            drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
            drops_fig = go.Figure()
            drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
            drops_fig.update_layout(
                title="Significant Probability Drops",
                xaxis_title="Token Position",
                yaxis_title="Log Probability Drop",
                hovermode="closest",
                clickmode='event+select'
            )
            drops_fig.update_traces(
                customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)],
                hovertemplate='<b>%{customdata}</b><extra></extra>'
            )

        # 3. Anomaly Detection (Interactive Plotly)
        if not paginated_logprobs:
            anomaly_fig = go.Figure()
            anomaly_fig.add_trace(go.Scatter(x=[], y=[], mode='markers+lines', name='Log Prob', marker_color='blue'))
        else:
            z_scores = np.abs(stats.zscore(paginated_logprobs))
            outliers = z_scores > 2  # Threshold for outliers
            anomaly_fig = go.Figure()
            anomaly_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker_color='blue'))
            anomaly_fig.add_trace(go.Scatter(x=np.where(outliers)[0], y=[paginated_logprobs[i] for i in np.where(outliers)[0]], mode='markers', name='Outliers', marker_color='red'))
            anomaly_fig.update_layout(
                title="Log Probabilities with Outliers",
                xaxis_title="Token Position",
                yaxis_title="Log Probability",
                hovermode="closest",
                clickmode='event+select'
            )
            anomaly_fig.update_traces(
                customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}, Outlier: {out}" for i, (tok, prob, out) in enumerate(zip(paginated_tokens, paginated_logprobs, outliers))],
                hovertemplate='<b>%{customdata}</b><extra></extra>'
            )

        # Create DataFrame for the table (paginated)
        table_data = []
        for i, entry in enumerate(content[start_idx:end_idx]):
            logprob = ensure_float(entry.get("logprob", None))
            if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter and "top_logprobs" in entry and entry["top_logprobs"] is not None:
                token = entry["token"]
                top_logprobs = entry["top_logprobs"]
                # Ensure all values in top_logprobs are floats
                finite_top_logprobs = {}
                for key, value in top_logprobs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_logprobs[key] = float_value
                # Extract top 3 alternatives from top_logprobs
                top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
                row = [token, f"{logprob:.4f}"]
                for alt_token, alt_logprob in top_3:
                    row.append(f"{alt_token}: {alt_logprob:.4f}")
                while len(row) < 5:
                    row.append("")
                table_data.append(row)

        df = (
            pd.DataFrame(
                table_data,
                columns=[
                    "Token",
                    "Log Prob",
                    "Top 1 Alternative",
                    "Top 2 Alternative",
                    "Top 3 Alternative",
                ],
            )
            if table_data
            else None
        )

        # Generate colored text (paginated)
        if paginated_logprobs:
            min_logprob = min(paginated_logprobs)
            max_logprob = max(paginated_logprobs)
            if max_logprob == min_logprob:
                normalized_probs = [0.5] * len(paginated_logprobs)
            else:
                normalized_probs = [
                    (lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs
                ]

            colored_text = ""
            for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)):
                r = int(255 * (1 - norm_prob))  # Red for low confidence
                g = int(255 * norm_prob)        # Green for high confidence
                b = 0
                color = f"rgb({r}, {g}, {b})"
                colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
                if i < len(paginated_tokens) - 1:
                    colored_text += " "
            colored_text_html = f"<p>{colored_text}</p>"
        else:
            colored_text_html = "No finite log probabilities to display."

        # Top 3 Token Log Probabilities (paginated)
        alt_viz_html = ""
        if paginated_logprobs and paginated_alternatives:
            alt_viz_html = "<h3>Top 3 Token Log Probabilities (Paginated)</h3><ul>"
            for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)):
                alt_viz_html += f"<li>Position {i+start_idx} (Token: {token}):<br>"
                for tok, prob in probs:
                    alt_viz_html += f"{tok}: {prob:.4f}<br>"
                alt_viz_html += "</li>"
            alt_viz_html += "</ul>"

        return (main_fig, df, colored_text_html, alt_viz_html, drops_fig, anomaly_fig, total_pages, page)

    except Exception as e:
        logger.error("Visualization failed: %s", str(e))
        return (gr.update(value=f"Error: {str(e)}"), None, "No finite log probabilities to display.", None, gr.update(value="No data for probability drops."), gr.update(value="No data for anomalies."), 1, 0)

# Gradio interface with interactive layout and pagination
with gr.Blocks(title="Log Probability Visualizer") as app:
    gr.Markdown("# Log Probability Visualizer")
    gr.Markdown(
        "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Use the filter and pagination to navigate large inputs."
    )

    with gr.Row():
        with gr.Column(scale=1):
            json_input = gr.Textbox(
                label="JSON Input",
                lines=10,
                placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
            )
        with gr.Column(scale=1):
            prob_filter = gr.Slider(minimum=-1e9, maximum=0, value=-1e9, label="Log Probability Filter (≥)")
            page_size = gr.Number(value=50, label="Page Size", precision=0, minimum=10, maximum=1000)
            page = gr.Number(value=0, label="Page Number", precision=0, minimum=0)

    with gr.Row():
        plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
        drops_output = gr.Plot(label="Probability Drops (Click for Details)")

    with gr.Row():
        anomaly_output = gr.Plot(label="Anomaly Detection (Click for Details)")
        table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")

    with gr.Row():
        text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
        alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities")

    btn = gr.Button("Visualize")
    btn.click(
        fn=visualize_logprobs,
        inputs=[json_input, prob_filter, page_size, page],
        outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, anomaly_output, gr.State(visible=False), gr.State(visible=False)],
    )

    # Pagination controls
    with gr.Row():
        prev_btn = gr.Button("Previous Page")
        next_btn = gr.Button("Next Page")
        total_pages_output = gr.Number(label="Total Pages", interactive=False, visible=False)
        current_page_output = gr.Number(label="Current Page", interactive=False, visible=False)

    def update_page(json_input, prob_filter, page_size, current_page, action):
        if action == "prev" and current_page > 0:
            current_page -= 1
        elif action == "next":
            total_pages = visualize_logprobs(json_input, prob_filter, page_size, 0)[6]  # Get total pages
            if current_page < total_pages - 1:
                current_page += 1
        return gr.update(value=current_page), gr.update(value=total_pages)

    prev_btn.click(
        fn=lambda *args: update_page(*args, "prev"),
        inputs=[json_input, prob_filter, page_size, page, gr.State()],
        outputs=[page, total_pages_output]
    )

    next_btn.click(
        fn=lambda *args: update_page(*args, "next"),
        inputs=[json_input, prob_filter, page_size, page, gr.State()],
        outputs=[page, total_pages_output]
    )

app.launch()