File size: 8,355 Bytes
0244d3c
 
 
 
6934db6
 
c28bdaa
d8a969c
527fd08
 
 
 
 
d8a969c
 
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
 
 
 
 
 
 
527fd08
 
 
d8a969c
527fd08
d8a969c
0244d3c
527fd08
 
 
 
 
 
 
 
 
 
 
 
 
 
0244d3c
 
 
d8a969c
 
 
 
181b7be
 
c28bdaa
 
 
 
181b7be
 
c28bdaa
 
 
527fd08
 
181b7be
527fd08
 
 
181b7be
 
0244d3c
c28bdaa
527fd08
181b7be
 
527fd08
 
181b7be
 
 
 
527fd08
181b7be
527fd08
 
 
 
 
 
181b7be
 
 
527fd08
181b7be
0244d3c
 
 
 
 
 
 
181b7be
 
c28bdaa
 
181b7be
c28bdaa
 
 
 
181b7be
c28bdaa
181b7be
c28bdaa
 
181b7be
c28bdaa
 
181b7be
 
c28bdaa
181b7be
c28bdaa
 
 
181b7be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28bdaa
 
 
 
181b7be
c28bdaa
181b7be
 
 
 
c28bdaa
 
181b7be
 
 
 
c28bdaa
 
181b7be
 
7e141c2
c28bdaa
181b7be
7e141c2
181b7be
0244d3c
527fd08
7e141c2
0244d3c
 
 
 
181b7be
d8a969c
181b7be
 
 
 
 
d8a969c
181b7be
 
6934db6
0244d3c
7e141c2
181b7be
0244d3c
 
 
 
181b7be
0244d3c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
    logger.debug("Attempting to parse input: %s", json_input)
    try:
        # Try to parse as JSON first
        data = json.loads(json_input)
        logger.debug("Successfully parsed as JSON")
        return data
    except json.JSONDecodeError as e:
        logger.error("JSON parsing failed: %s", str(e))
        try:
            # If JSON fails, try to parse as Python literal (e.g., with single quotes)
            data = ast.literal_eval(json_input)
            logger.debug("Successfully parsed as Python literal")
            # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
            def dict_to_json(obj):
                if isinstance(obj, dict):
                    return {str(k): dict_to_json(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [dict_to_json(item) for item in obj]
                else:
                    return obj
            converted_data = dict_to_json(data)
            logger.debug("Converted to JSON-compatible format")
            return converted_data
        except (SyntaxError, ValueError) as e:
            logger.error("Python literal parsing failed: %s", str(e))
            raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")

# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
    if value is None:
        return None
    if isinstance(value, str):
        try:
            return float(value)
        except ValueError:
            logger.error("Failed to convert string '%s' to float", value)
            return None
    if isinstance(value, (int, float)):
        return float(value)
    return None

# Function to process and visualize log probs
def visualize_logprobs(json_input):
    try:
        # Parse the input (handles both JSON and Python dictionaries)
        data = parse_input(json_input)
        
        # Ensure data is a list or dictionary with 'content'
        if isinstance(data, dict) and "content" in data:
            content = data["content"]
        elif isinstance(data, list):
            content = data
        else:
            raise ValueError("Input must be a list or dictionary with 'content' key")

        # Extract tokens and log probs, skipping None or non-finite values
        tokens = []
        logprobs = []
        for entry in content:
            logprob = ensure_float(entry.get("logprob", None))
            if logprob is not None and math.isfinite(logprob):
                tokens.append(entry["token"])
                logprobs.append(logprob)
            else:
                logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))

        # Prepare table data, handling None in top_logprobs
        table_data = []
        for entry in content:
            logprob = ensure_float(entry.get("logprob", None))
            # Only include entries with finite logprob and non-None top_logprobs
            if (
                logprob is not None
                and math.isfinite(logprob)
                and "top_logprobs" in entry
                and entry["top_logprobs"] is not None
            ):
                token = entry["token"]
                logger.debug("Processing token: %s, logprob: %s (type: %s)", token, logprob, type(logprob))
                top_logprobs = entry["top_logprobs"]
                # Ensure all values in top_logprobs are floats
                finite_top_logprobs = {}
                for key, value in top_logprobs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_logprobs[key] = float_value

                # Extract top 3 alternatives from top_logprobs
                top_3 = sorted(
                    finite_top_logprobs.items(), key=lambda x: x[1], reverse=True
                )[:3]
                row = [token, f"{logprob:.4f}"]
                for alt_token, alt_logprob in top_3:
                    row.append(f"{alt_token}: {alt_logprob:.4f}")
                # Pad with empty strings if fewer than 3 alternatives
                while len(row) < 5:
                    row.append("")
                table_data.append(row)

        # Create the plot
        if logprobs:
            plt.figure(figsize=(10, 5))
            plt.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b")
            plt.title("Log Probabilities of Generated Tokens")
            plt.xlabel("Token Position")
            plt.ylabel("Log Probability")
            plt.grid(True)
            plt.xticks(range(len(logprobs)), tokens, rotation=45, ha="right")
            plt.tight_layout()

            # Save plot to a bytes buffer
            buf = io.BytesIO()
            plt.savefig(buf, format="png", bbox_inches="tight")
            buf.seek(0)
            plt.close()

            # Convert to base64 for Gradio
            img_bytes = buf.getvalue()
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">'
        else:
            img_html = "No finite log probabilities to plot."

        # Create DataFrame for the table
        df = (
            pd.DataFrame(
                table_data,
                columns=[
                    "Token",
                    "Log Prob",
                    "Top 1 Alternative",
                    "Top 2 Alternative",
                    "Top 3 Alternative",
                ],
            )
            if table_data
            else None
        )

        # Generate colored text
        if logprobs:
            min_logprob = min(logprobs)
            max_logprob = max(logprobs)
            if max_logprob == min_logprob:
                normalized_probs = [0.5] * len(logprobs)
            else:
                normalized_probs = [
                    (lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
                ]

            colored_text = ""
            for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
                r = int(255 * (1 - norm_prob))  # Red for low confidence
                g = int(255 * norm_prob)        # Green for high confidence
                b = 0
                color = f"rgb({r}, {g}, {b})"
                colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
                if i < len(tokens) - 1:
                    colored_text += " "
            colored_text_html = f"<p>{colored_text}</p>"
        else:
            colored_text_html = "No finite log probabilities to display."

        return img_html, df, colored_text_html

    except Exception as e:
        logger.error("Visualization failed: %s", str(e))
        return f"Error: {str(e)}", None, None

# Gradio interface
with gr.Blocks(title="Log Probability Visualizer") as app:
    gr.Markdown("# Log Probability Visualizer")
    gr.Markdown(
        "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Ensure property names are in double quotes (e.g., \"content\") for JSON, or use correct Python dictionary format."
    )

    json_input = gr.Textbox(
        label="JSON Input",
        lines=10,
        placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
    )

    plot_output = gr.HTML(label="Log Probability Plot")
    table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
    text_output = gr.HTML(label="Colored Text (Confidence Visualization)")

    btn = gr.Button("Visualize")
    btn.click(
        fn=visualize_logprobs,
        inputs=json_input,
        outputs=[plot_output, table_output, text_output],
    )

app.launch()