File size: 10,948 Bytes
0244d3c
 
 
 
6934db6
 
c28bdaa
d8a969c
527fd08
b7159a0
527fd08
 
 
 
d8a969c
 
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
 
 
 
 
 
 
527fd08
 
 
d8a969c
527fd08
d8a969c
0244d3c
527fd08
 
 
 
 
 
 
 
 
 
 
 
 
 
b7159a0
0244d3c
 
d8a969c
 
 
 
181b7be
 
c28bdaa
 
 
 
181b7be
b7159a0
c28bdaa
 
b7159a0
c28bdaa
527fd08
 
181b7be
527fd08
b7159a0
 
 
 
 
 
 
 
 
 
 
 
 
 
527fd08
 
181b7be
b7159a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0244d3c
b7159a0
527fd08
b7159a0
181b7be
 
527fd08
 
 
 
 
 
181b7be
b7159a0
0244d3c
 
 
 
 
 
181b7be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28bdaa
 
 
 
181b7be
c28bdaa
181b7be
 
 
 
c28bdaa
 
181b7be
 
 
 
c28bdaa
 
181b7be
 
7e141c2
c28bdaa
181b7be
b7159a0
 
 
 
 
 
 
 
 
 
 
 
181b7be
0244d3c
527fd08
b7159a0
0244d3c
 
 
 
181b7be
d8a969c
181b7be
 
 
 
 
d8a969c
181b7be
 
b7159a0
0244d3c
7e141c2
b7159a0
181b7be
0244d3c
 
 
 
b7159a0
0244d3c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
from matplotlib.widgets import Cursor

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
    logger.debug("Attempting to parse input: %s", json_input)
    try:
        # Try to parse as JSON first
        data = json.loads(json_input)
        logger.debug("Successfully parsed as JSON")
        return data
    except json.JSONDecodeError as e:
        logger.error("JSON parsing failed: %s", str(e))
        try:
            # If JSON fails, try to parse as Python literal (e.g., with single quotes)
            data = ast.literal_eval(json_input)
            logger.debug("Successfully parsed as Python literal")
            # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
            def dict_to_json(obj):
                if isinstance(obj, dict):
                    return {str(k): dict_to_json(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [dict_to_json(item) for item in obj]
                else:
                    return obj
            converted_data = dict_to_json(data)
            logger.debug("Converted to JSON-compatible format")
            return converted_data
        except (SyntaxError, ValueError) as e:
            logger.error("Python literal parsing failed: %s", str(e))
            raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")

# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
    if value is None:
        return None
    if isinstance(value, str):
        try:
            return float(value)
        except ValueError:
            logger.error("Failed to convert string '%s' to float", value)
            return None
    if isinstance(value, (int, float)):
        return float(value)
    return None

# Function to process and visualize log probs with hover and alternatives
def visualize_logprobs(json_input):
    try:
        # Parse the input (handles both JSON and Python dictionaries)
        data = parse_input(json_input)
        
        # Ensure data is a list or dictionary with 'content'
        if isinstance(data, dict) and "content" in data:
            content = data["content"]
        elif isinstance(data, list):
            content = data
        else:
            raise ValueError("Input must be a list or dictionary with 'content' key")

        # Extract tokens, log probs, and top alternatives, skipping None or non-finite values
        tokens = []
        logprobs = []
        top_alternatives = []  # List to store top 3 log probs (selected token + 2 alternatives)
        for entry in content:
            logprob = ensure_float(entry.get("logprob", None))
            if logprob is not None and math.isfinite(logprob):
                tokens.append(entry["token"])
                logprobs.append(logprob)
                # Get top_logprobs, default to empty dict if None
                top_probs = entry.get("top_logprobs", {})
                # Ensure all values in top_logprobs are floats
                finite_top_probs = {}
                for key, value in top_probs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_probs[key] = float_value
                # Get the top 3 log probs (including the selected token)
                all_probs = {entry["token"]: logprob}  # Add the selected token's logprob
                all_probs.update(finite_top_probs)  # Add alternatives
                sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
                top_3 = sorted_probs[:3]  # Top 3 log probs (highest to lowest)
                top_alternatives.append(top_3)
            else:
                logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))

        # Create the plot with hover functionality
        if logprobs:
            fig, ax = plt.subplots(figsize=(10, 5))
            scatter = ax.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Selected Token")[0]
            ax.set_title("Log Probabilities of Generated Tokens")
            ax.set_xlabel("Token Position")
            ax.set_ylabel("Log Probability")
            ax.grid(True)
            ax.set_xticks([])  # Hide X-axis labels by default

            # Add hover functionality using Matplotlib's Cursor for tooltips
            cursor = Cursor(ax, useblit=True, color='red', linewidth=1)
            token_annotations = []
            for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
                annotation = ax.annotate('', (x, y), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', alpha=0.8), visible=False)
                token_annotations.append(annotation)

            def on_hover(event):
                if event.inaxes == ax:
                    for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
                        contains, _ = scatter.contains(event)
                        if contains and abs(event.xdata - x) < 0.5 and abs(event.ydata - y) < 0.5:
                            token_annotations[i].set_text(tokens[i])
                            token_annotations[i].set_visible(True)
                            fig.canvas.draw_idle()
                        else:
                            token_annotations[i].set_visible(False)
                            fig.canvas.draw_idle()

            fig.canvas.mpl_connect('motion_notify_event', on_hover)

            # Save plot to a bytes buffer
            buf = io.BytesIO()
            plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
            buf.seek(0)
            plt.close()

            # Convert to base64 for Gradio
            img_bytes = buf.getvalue()
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">'
        else:
            img_html = "No finite log probabilities to plot."

        # Create DataFrame for the table
        table_data = []
        for i, entry in enumerate(content):
            logprob = ensure_float(entry.get("logprob", None))
            if logprob is not None and math.isfinite(logprob) and "top_logprobs" in entry and entry["top_logprobs"] is not None:
                token = entry["token"]
                top_logprobs = entry["top_logprobs"]
                # Ensure all values in top_logprobs are floats
                finite_top_logprobs = {}
                for key, value in top_logprobs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_logprobs[key] = float_value
                # Extract top 3 alternatives from top_logprobs
                top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
                row = [token, f"{logprob:.4f}"]
                for alt_token, alt_logprob in top_3:
                    row.append(f"{alt_token}: {alt_logprob:.4f}")
                while len(row) < 5:
                    row.append("")
                table_data.append(row)

        df = (
            pd.DataFrame(
                table_data,
                columns=[
                    "Token",
                    "Log Prob",
                    "Top 1 Alternative",
                    "Top 2 Alternative",
                    "Top 3 Alternative",
                ],
            )
            if table_data
            else None
        )

        # Generate colored text
        if logprobs:
            min_logprob = min(logprobs)
            max_logprob = max(logprobs)
            if max_logprob == min_logprob:
                normalized_probs = [0.5] * len(logprobs)
            else:
                normalized_probs = [
                    (lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
                ]

            colored_text = ""
            for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
                r = int(255 * (1 - norm_prob))  # Red for low confidence
                g = int(255 * norm_prob)        # Green for high confidence
                b = 0
                color = f"rgb({r}, {g}, {b})"
                colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
                if i < len(tokens) - 1:
                    colored_text += " "
            colored_text_html = f"<p>{colored_text}</p>"
        else:
            colored_text_html = "No finite log probabilities to display."

        # Create an alternative visualization for top 3 tokens
        alt_viz_html = ""
        if logprobs and top_alternatives:
            alt_viz_html = "<h3>Top 3 Token Log Probabilities</h3><ul>"
            for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
                alt_viz_html += f"<li>Position {i} (Token: {token}):<br>"
                for tok, prob in probs:
                    alt_viz_html += f"{tok}: {prob:.4f}<br>"
                alt_viz_html += "</li>"
            alt_viz_html += "</ul>"

        return img_html, df, colored_text_html, alt_viz_html

    except Exception as e:
        logger.error("Visualization failed: %s", str(e))
        return f"Error: {str(e)}", None, None, None

# Gradio interface
with gr.Blocks(title="Log Probability Visualizer") as app:
    gr.Markdown("# Log Probability Visualizer")
    gr.Markdown(
        "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Ensure property names are in double quotes (e.g., \"content\") for JSON, or use correct Python dictionary format."
    )

    json_input = gr.Textbox(
        label="JSON Input",
        lines=10,
        placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
    )

    plot_output = gr.HTML(label="Log Probability Plot (Hover for Tokens)")
    table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
    text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
    alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities")

    btn = gr.Button("Visualize")
    btn.click(
        fn=visualize_logprobs,
        inputs=json_input,
        outputs=[plot_output, table_output, text_output, alt_viz_output],
    )

app.launch()