Spaces:
Running
Running
File size: 10,948 Bytes
0244d3c 6934db6 c28bdaa d8a969c 527fd08 b7159a0 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 527fd08 d8a969c 0244d3c 527fd08 b7159a0 0244d3c d8a969c 181b7be c28bdaa 181b7be b7159a0 c28bdaa b7159a0 c28bdaa 527fd08 181b7be 527fd08 b7159a0 527fd08 181b7be b7159a0 0244d3c b7159a0 527fd08 b7159a0 181b7be 527fd08 181b7be b7159a0 0244d3c 181b7be c28bdaa 181b7be c28bdaa 181b7be c28bdaa 181b7be c28bdaa 181b7be 7e141c2 c28bdaa 181b7be b7159a0 181b7be 0244d3c 527fd08 b7159a0 0244d3c 181b7be d8a969c 181b7be d8a969c 181b7be b7159a0 0244d3c 7e141c2 b7159a0 181b7be 0244d3c b7159a0 0244d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
from matplotlib.widgets import Cursor
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
# Try to parse as JSON first
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
try:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
logger.debug("Successfully parsed as Python literal")
# Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
def dict_to_json(obj):
if isinstance(obj, dict):
return {str(k): dict_to_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [dict_to_json(item) for item in obj]
else:
return obj
converted_data = dict_to_json(data)
logger.debug("Converted to JSON-compatible format")
return converted_data
except (SyntaxError, ValueError) as e:
logger.error("Python literal parsing failed: %s", str(e))
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")
# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
if value is None:
return None
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return None
if isinstance(value, (int, float)):
return float(value)
return None
# Function to process and visualize log probs with hover and alternatives
def visualize_logprobs(json_input):
try:
# Parse the input (handles both JSON and Python dictionaries)
data = parse_input(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and "content" in data:
content = data["content"]
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens, log probs, and top alternatives, skipping None or non-finite values
tokens = []
logprobs = []
top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
for entry in content:
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob):
tokens.append(entry["token"])
logprobs.append(logprob)
# Get top_logprobs, default to empty dict if None
top_probs = entry.get("top_logprobs", {})
# Ensure all values in top_logprobs are floats
finite_top_probs = {}
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs[key] = float_value
# Get the top 3 log probs (including the selected token)
all_probs = {entry["token"]: logprob} # Add the selected token's logprob
all_probs.update(finite_top_probs) # Add alternatives
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
top_alternatives.append(top_3)
else:
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
# Create the plot with hover functionality
if logprobs:
fig, ax = plt.subplots(figsize=(10, 5))
scatter = ax.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Selected Token")[0]
ax.set_title("Log Probabilities of Generated Tokens")
ax.set_xlabel("Token Position")
ax.set_ylabel("Log Probability")
ax.grid(True)
ax.set_xticks([]) # Hide X-axis labels by default
# Add hover functionality using Matplotlib's Cursor for tooltips
cursor = Cursor(ax, useblit=True, color='red', linewidth=1)
token_annotations = []
for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
annotation = ax.annotate('', (x, y), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', alpha=0.8), visible=False)
token_annotations.append(annotation)
def on_hover(event):
if event.inaxes == ax:
for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)):
contains, _ = scatter.contains(event)
if contains and abs(event.xdata - x) < 0.5 and abs(event.ydata - y) < 0.5:
token_annotations[i].set_text(tokens[i])
token_annotations[i].set_visible(True)
fig.canvas.draw_idle()
else:
token_annotations[i].set_visible(False)
fig.canvas.draw_idle()
fig.canvas.mpl_connect('motion_notify_event', on_hover)
# Save plot to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
buf.seek(0)
plt.close()
# Convert to base64 for Gradio
img_bytes = buf.getvalue()
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">'
else:
img_html = "No finite log probabilities to plot."
# Create DataFrame for the table
table_data = []
for i, entry in enumerate(content):
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and "top_logprobs" in entry and entry["top_logprobs"] is not None:
token = entry["token"]
top_logprobs = entry["top_logprobs"]
# Ensure all values in top_logprobs are floats
finite_top_logprobs = {}
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_logprobs[key] = float_value
# Extract top 3 alternatives from top_logprobs
top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in top_3:
row.append(f"{alt_token}: {alt_logprob:.4f}")
while len(row) < 5:
row.append("")
table_data.append(row)
df = (
pd.DataFrame(
table_data,
columns=[
"Token",
"Log Prob",
"Top 1 Alternative",
"Top 2 Alternative",
"Top 3 Alternative",
],
)
if table_data
else None
)
# Generate colored text
if logprobs:
min_logprob = min(logprobs)
max_logprob = max(logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(logprobs)
else:
normalized_probs = [
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No finite log probabilities to display."
# Create an alternative visualization for top 3 tokens
alt_viz_html = ""
if logprobs and top_alternatives:
alt_viz_html = "<h3>Top 3 Token Log Probabilities</h3><ul>"
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
alt_viz_html += f"<li>Position {i} (Token: {token}):<br>"
for tok, prob in probs:
alt_viz_html += f"{tok}: {prob:.4f}<br>"
alt_viz_html += "</li>"
alt_viz_html += "</ul>"
return img_html, df, colored_text_html, alt_viz_html
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return f"Error: {str(e)}", None, None, None
# Gradio interface
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown(
"Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Ensure property names are in double quotes (e.g., \"content\") for JSON, or use correct Python dictionary format."
)
json_input = gr.Textbox(
label="JSON Input",
lines=10,
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
)
plot_output = gr.HTML(label="Log Probability Plot (Hover for Tokens)")
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities")
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=json_input,
outputs=[plot_output, table_output, text_output, alt_viz_output],
)
app.launch() |