File size: 5,831 Bytes
7cac9bf
47125e3
 
 
 
 
 
 
 
 
d9b620b
39f223a
f9fc957
ba952d1
7cac9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b522f05
7cac9bf
3aae288
7cac9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e95ab
 
 
 
 
1ea4820
 
a7df561
39f223a
47125e3
7cac9bf
47125e3
7cac9bf
 
47125e3
 
ba952d1
 
d9b620b
7cac9bf
 
 
47125e3
ba952d1
 
 
47125e3
7cac9bf
47125e3
 
ba952d1
47125e3
 
 
 
 
7cac9bf
47125e3
7cac9bf
 
 
 
 
6b24be8
7cac9bf
 
47125e3
ba952d1
47125e3
 
ba952d1
7cac9bf
 
 
 
 
47125e3
 
75ce576
7cac9bf
47125e3
7cac9bf
 
 
 
 
 
47125e3
7cac9bf
 
ec3fe15
ba952d1
47125e3
7cac9bf
 
47125e3
ba952d1
 
 
f9fc957
ba952d1
f9fc957
ba952d1
f9fc957
ba952d1
 
 
75ce576
67673ff
a7df561
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

openai.api_key = os.getenv('OpenAPI') 



def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)

def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text

def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list

def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    chunks = []

    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:

    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False

    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True

    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]

        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors

    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings

recommender = SemanticSearch()

def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'
    
def generate_text(prompt, engine="davinci"):
    openai.api_key = OpenAPI
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
    n=1,
    stop=None,
    temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def generate_answer(question):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
              "search results which have nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "

    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(prompt, "davinci")
    return answer

def question_answer(url, file, question):
    if url.strip() == '' and file is None:
        return '[ERROR]: Both URL and PDF are empty. Provide at least one.'

    if url.strip() != '' and file is not None:
        return '[ERROR]: Both URL and PDF are provided. Please provide only one (either URL or PDF).'

    if url.strip() != '':
        download_pdf(url, 'corpus.pdf')
        load_recommender('corpus.pdf')

    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]
        os.rename(old_file_name, file_name)
        load_recommender(file_name)

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    return generate_answer(question)

title = 'PDF GPT'
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""

iface = gr.Interface(
    fn=question_answer,
    inputs=[
        gr.inputs.Text(label="Enter PDF URL here"),
        gr.inputs.File(label="Upload PDF file"),
        gr.inputs.Text(label="Enter your question here"),
    ],
    outputs=gr.outputs.Text(label="Generated Answer"),
    title=title,
    description=description
)
iface.launch()