Spaces:
Running
Running
File size: 15,324 Bytes
0bb0d8e 87f3409 d990dd0 da9138c 7ac4ac2 da9138c 64259e4 acd8816 0bb0d8e a3dba94 acd8816 16bc3e4 a8b126b 26eb097 a8b126b 16bc3e4 a8b126b 16bc3e4 acd8816 16bc3e4 d274746 da9138c 57968e0 a96aeb1 d274746 da9138c d274746 57968e0 d274746 acd8816 a96aeb1 57968e0 a96aeb1 57968e0 a96aeb1 57968e0 a96aeb1 57968e0 a96aeb1 d274746 57968e0 d274746 57968e0 d274746 a96aeb1 57968e0 a96aeb1 64259e4 a96aeb1 64259e4 57968e0 a96aeb1 57968e0 a96aeb1 57968e0 a96aeb1 64259e4 57968e0 d274746 57968e0 d274746 57968e0 d274746 da9138c d274746 57968e0 d274746 acd8816 d274746 57968e0 64259e4 d274746 57968e0 d274746 64259e4 57968e0 acd8816 64259e4 acd8816 57968e0 64259e4 acd8816 57968e0 acd8816 d680d0f 57968e0 d680d0f 57968e0 d680d0f 57968e0 26eb097 d680d0f a96aeb1 26eb097 d811f00 d680d0f a8b126b d680d0f a8b126b d680d0f a96aeb1 d274746 26eb097 d811f00 d274746 a96aeb1 64259e4 26eb097 d811f00 64259e4 1c4f98a a8b126b 1c4f98a a8b126b 1c4f98a a96aeb1 64259e4 acd8816 d274746 64259e4 26eb097 d274746 1c4f98a d274746 acd8816 26eb097 a96aeb1 d274746 26eb097 a96aeb1 26eb097 d274746 a96aeb1 64259e4 ae4be5c d5bbd76 834c15f d5bbd76 834c15f d5bbd76 a3dba94 d5bbd76 ed10fe0 ae4be5c d5bbd76 a3dba94 dbb0e1e a3dba94 d5bbd76 a3dba94 d5bbd76 a3dba94 d5bbd76 a3dba94 d5bbd76 1c4f98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import gradio as gr
import os
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import yt_dlp
class LogCapture(io.StringIO):
def __init__(self, callback):
super().__init__()
self.callback = callback
def write(self, s):
super().write(s)
self.callback(s)
logging.basicConfig(level=logging.INFO)
# Clone and install faster-whisper from GitHub
try:
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
logging.error(f"Error during faster-whisper installation: {e}")
sys.exit(1)
sys.path.append("./faster-whisper")
from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def download_audio(url, method_choice):
parsed_url = urlparse(url)
logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']:
return download_youtube_audio(url, method_choice)
else:
return download_direct_audio(url, method_choice)
def download_youtube_audio(url, method_choice):
methods = {
'yt-dlp': youtube_dl_method,
'pytube': pytube_method,
'youtube-dl': youtube_dl_classic_method,
'yt-dlp-alt': youtube_dl_alternative_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method
}
method = methods.get(method_choice, youtube_dl_method)
try:
logging.info(f"Attempting to download YouTube audio using {method_choice}")
return method(url)
except Exception as e:
logging.error(f"Error downloading using {method_choice}: {str(e)}")
return None
def youtube_dl_method(url):
logging.info("Using yt-dlp method")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
return f"{info['id']}.mp3"
def pytube_method(url):
logging.info("Using pytube method")
from pytube import YouTube
yt = YouTube(url)
audio_stream = yt.streams.filter(only_audio=True).first()
out_file = audio_stream.download()
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
logging.info(f"Downloaded and converted audio to: {new_file}")
return new_file
def youtube_dl_classic_method(url):
logging.info("Using youtube-dl classic method")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
return f"{info['id']}.mp3"
def youtube_dl_alternative_method(url):
logging.info("Using yt-dlp alternative method")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
'no_warnings': True,
'quiet': True,
'no_check_certificate': True,
'prefer_insecure': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
return f"{info['id']}.mp3"
def ffmpeg_method(url):
logging.info("Using ffmpeg method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
subprocess.run(command, check=True, capture_output=True)
logging.info(f"Downloaded and converted audio to: {output_file}")
return output_file
def aria2_method(url):
logging.info("Using aria2 method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
subprocess.run(command, check=True, capture_output=True)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
def download_direct_audio(url, method_choice):
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
if method_choice == 'wget':
return wget_method(url)
else:
try:
response = requests.get(url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
temp_file.write(response.content)
logging.info(f"Downloaded direct audio to: {temp_file.name}")
return temp_file.name
else:
raise Exception(f"Failed to download audio from {url}")
except Exception as e:
logging.error(f"Error downloading direct audio: {str(e)}")
return None
def wget_method(url):
logging.info("Using wget method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
subprocess.run(command, check=True, capture_output=True)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
def trim_audio(audio_path, start_time, end_time):
logging.info(f"Trimming audio from {start_time} to {end_time}")
audio = AudioSegment.from_file(audio_path)
trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:]
trimmed_audio_path = tempfile.mktemp(suffix='.wav')
trimmed_audio.export(trimmed_audio_path, format="wav")
logging.info(f"Trimmed audio saved to: {trimmed_audio_path}")
return trimmed_audio_path
def save_transcription(transcription):
file_path = tempfile.mktemp(suffix='.txt')
with open(file_path, 'w') as f:
f.write(transcription)
logging.info(f"Transcription saved to: {file_path}")
return file_path
def get_model_options(pipeline_type):
if pipeline_type == "faster-batched":
return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "faster-sequenced":
return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "transformers":
return ["openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "primeline/whisper-large-v3-german"]
else:
return []
def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False):
try:
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
if verbose:
yield verbose_messages, "", None
if pipeline_type == "faster-batched":
model = WhisperModel(model_id, device="auto", compute_type=dtype)
pipeline = BatchedInferencePipeline(model=model)
elif pipeline_type == "faster-sequenced":
model = WhisperModel(model_id)
pipeline = model.transcribe
elif pipeline_type == "transformers":
torch_dtype = torch.float16 if dtype == "float16" else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=batch_size,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
else:
raise ValueError("Invalid pipeline type")
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
audio_path = download_audio(input_source, download_method)
verbose_messages += f"Audio file downloaded: {audio_path}\n"
if verbose:
yield verbose_messages, "", None
if not audio_path or audio_path.startswith("Error"):
yield f"Error: {audio_path}", "", None
return
else:
audio_path = input_source
if start_time is not None or end_time is not None:
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
audio_path = trimmed_audio_path
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
if verbose:
yield verbose_messages, "", None
start_time_perf = time.time()
if pipeline_type in ["faster-batched", "faster-sequenced"]:
segments, info = pipeline(audio_path, batch_size=batch_size)
else:
result = pipeline(audio_path)
segments = result["chunks"]
end_time_perf = time.time()
transcription_time = end_time_perf - start_time_perf
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
metrics_output = (
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
if verbose:
yield verbose_messages + metrics_output, "", None
transcription = ""
for segment in segments:
transcription_segment = (
f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
if pipeline_type in ["faster-batched", "faster-sequenced"] else
f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
)
transcription += transcription_segment
if verbose:
yield verbose_messages + metrics_output, transcription, None
transcription_file = save_transcription(transcription)
yield verbose_messages + metrics_output, transcription, transcription_file
except Exception as e:
logging.error(f"An error occurred during transcription: {str(e)}")
yield f"An error occurred: {str(e)}", "", None
finally:
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
try:
os.remove(audio_path)
except:
pass
if start_time is not None or end_time is not None:
try:
os.remove(trimmed_audio_path)
except:
pass
with gr.Blocks() as iface:
gr.Markdown("# Multi-Pipeline Transcription")
gr.Markdown("Transcribe audio using multiple pipelines and models.")
with gr.Row():
input_source = gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)")
pipeline_type = gr.Dropdown(
choices=["faster-batched", "faster-sequenced", "transformers"],
label="Pipeline Type",
value="faster-batched"
)
model_id = gr.Dropdown(
label="Model",
choices=get_model_options("faster-batched"),
value=get_model_options("faster-batched")[0]
)
with gr.Row():
dtype = gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8")
batch_size = gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
download_method = gr.Dropdown(
choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"],
label="Download Method",
value="yt-dlp"
)
with gr.Row():
start_time = gr.Number(label="Start Time (seconds)", value=0)
end_time = gr.Number(label="End Time (seconds)", value=0)
verbose = gr.Checkbox(label="Verbose Output", value=True) # Set to True by default
transcribe_button = gr.Button("Transcribe")
with gr.Row():
metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
transcription_output = gr.Textbox(label="Transcription", lines=10)
transcription_file = gr.File(label="Download Transcription")
def update_model_dropdown(pipeline_type):
model_choices = get_model_options(pipeline_type)
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
if model_choices:
return gr.Dropdown.update(choices=model_choices, value=model_choices[0], visible=True)
else:
return gr.Dropdown.update(choices=["No models available"], value=None, visible=False)
pipeline_type.change(update_model_dropdown, inputs=pipeline_type, outputs=model_id)
def transcribe_with_progress(*args):
for result in transcribe_audio(*args):
yield result
transcribe_button.click(
transcribe_with_progress,
inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
outputs=[metrics_output, transcription_output, transcription_file]
)
gr.Examples(
examples=[
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", 0, None, True],
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "faster-sequenced", "deepdml/faster-whisper-large-v3-turbo-ct2", "float16", 1, "ffmpeg", 0, 300, True],
["path/to/local/audio.mp3", "transformers", "openai/whisper-large-v3", "float16", 16, "yt-dlp", 60, 180, True]
],
inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
)
iface.launch() |