Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
model_name = "allenai/t5-small-squad2-question-generation" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
def generate_questions(input_string, max_length=80, temperature=1.0, num_return_sequences=2, | |
num_beams=4, top_k=90, top_p=0.9): | |
input_ids = tokenizer.encode(input_string, return_tensors="pt") | |
res = model.generate(input_ids, max_length=max_length, num_return_sequences=num_return_sequences, | |
num_beams=num_beams, temperature=temperature, top_k=top_k, top_p=top_p) | |
output = tokenizer.batch_decode(res, skip_special_tokens=True) | |
return output | |
input_text = gr.inputs.Textbox(label="Enter some text:", default="Nicejob has increased our revenue 80% since signing up") | |
max_length = gr.inputs.Slider(10, 150, 80, label="Max Length") | |
temperature = gr.inputs.Slider(0.0, 1.0, 1.0, step=0.05, label="Temperature") | |
num_return_sequences = gr.inputs.Slider(1, 10, 2, label="Num Return Sequences") | |
num_beams = gr.inputs.Slider(1, 10, 4, label="Num Beams") | |
top_k = gr.inputs.Slider(0, 100, 90, label="Top-k") | |
top_p = gr.inputs.Slider(0.0, 1.0, 0.9, step=0.05, label="Top-p") | |
output_text = gr.outputs.Textbox(label="Generated questions:") | |
iface = gr.Interface( | |
generate_questions, | |
inputs=[input_text, max_length, temperature, num_return_sequences, num_beams, top_k, top_p], | |
outputs=output_text, | |
title="Question Generation", | |
description="Generate questions from text using the T5-SQuAD2 model.", | |
) | |
iface.launch() | |