Spaces:
Running
Running
File size: 10,766 Bytes
186113b 889c466 186113b 889c466 186113b 889c466 1a03059 186113b 889c466 186113b d5ca01c 889c466 186113b 889c466 d5ca01c 889c466 1f12a21 889c466 d5ca01c 889c466 d5ca01c 889c466 d5ca01c 6dd78c5 889c466 c46b668 d5ca01c 6dd78c5 d5ca01c c46b668 889c466 6dd78c5 1a03059 6dd78c5 1a03059 6dd78c5 1a03059 6dd78c5 1a03059 889c466 5e448d3 1a03059 ecd64bb 1a03059 5e448d3 1a03059 5e448d3 1a03059 ecd64bb 1a03059 ecd64bb 1a03059 5e448d3 1a03059 ecd64bb 1a03059 889c466 1a03059 889c466 3bc4713 889c466 1a03059 889c466 1a03059 889c466 1a03059 d5ca01c 1a03059 889c466 1a03059 d5ca01c 1a03059 889c466 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import ssl
import cv2
import torch
import certifi
import numpy as np
import gradio as gr
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image, ImageEnhance
import torchvision.transforms as transforms
import urllib
import json
ssl._create_default_https_context = lambda: ssl.create_default_context(cafile=certifi.where())
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Number of classes
num_classes = 6
'''
resnet imagenet
'''
url = "https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json"
with urllib.request.urlopen(url) as f:
imagenet_classes = json.load(f)
## Convert to dictionary format {0: "tench", 1: "goldfish", ..., 999: "toilet tissue"}
cifar10_classes = {int(k): v[1] for k, v in imagenet_classes.items()}
# Load the pre-trained ResNet model
model = models.resnet18(pretrained=True)
# Modify the classifier for 6 classes with an additional hidden layer
# model.fc = nn.Sequential(
# nn.Linear(model.fc.in_features, 512),
# nn.ReLU(),
# nn.Linear(512, num_classes)
# )
# Load trained weights
# model.load_state_dict(torch.load('model_old.pth', map_location=torch.device('cpu')))
model.eval()
# Class labels
# class_labels = ['bird', 'cat', 'deer', 'dog', 'frog', 'horse']
class_labels = [cifar10_classes[i] for i in range(len(cifar10_classes))]
class MultiLayerGradCAM:
def __init__(self, model, target_layers=None):
self.model = model
self.target_layers = target_layers if target_layers else ['layer4']
self.activations = []
self.gradients = []
self.handles = []
# Register hooks
for name, module in self.model.named_modules():
if name in self.target_layers:
self.handles.append(
module.register_forward_hook(self._forward_hook)
)
self.handles.append(
module.register_backward_hook(self._backward_hook)
)
def _forward_hook(self, module, input, output):
self.activations.append(output.detach())
def _backward_hook(self, module, grad_input, grad_output):
self.gradients.append(grad_output[0].detach())
def _find_layer(self, layer_name):
for name, module in self.model.named_modules():
if name == layer_name:
return module
raise ValueError(f"Layer {layer_name} not found in model")
def generate(self, input_tensor, target_class=None):
device = next(self.model.parameters()).device
self.model.zero_grad()
# Forward pass
output = self.model(input_tensor.to(device))
pred_class = torch.argmax(output).item() if target_class is None else target_class
# Backward pass
one_hot = torch.zeros_like(output)
one_hot[0][pred_class] = 1
output.backward(gradient=one_hot)
# Process activations and gradients
heatmaps = []
for act, grad in zip(self.activations, reversed(self.gradients)):
# Compute weights
weights = F.adaptive_avg_pool2d(grad, 1)
# Create weighted combination of activation maps
cam = torch.mul(act, weights).sum(dim=1, keepdim=True)
cam = F.relu(cam)
print(cam.shape)
# Upsample to input size
cam = F.interpolate(cam, size=input_tensor.shape[2:],
mode='bilinear', align_corners=False)
heatmaps.append(cam.squeeze().cpu().numpy())
# Combine heatmaps from different layers
combined_heatmap = np.mean(heatmaps, axis=0)
# print(combined_heatmap.shape)
# Normalize
combined_heatmap = np.maximum(combined_heatmap, 0)
combined_heatmap = (combined_heatmap - combined_heatmap.min()) / \
(combined_heatmap.max() - combined_heatmap.min() + 1e-10)
return combined_heatmap, pred_class
def __del__(self):
for handle in self.handles:
handle.remove()
gradcam = MultiLayerGradCAM(model, target_layers=['layer4'])
# Image transformation function
def transform_image(image):
"""Preprocess the input image."""
mean, std = [0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]
img_size=224
transform = transforms.Compose([ #IMAGENET
transforms.Resize((224,224)), # Resize shorter side to 256, keeping aspect ratio
# transforms.CenterCrop(224), # Crop the center 224x224 region
transforms.ToTensor(), # Convert to tensor (scales to [0,1])
transforms.Normalize( # Normalize using ImageNet mean & std
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
img_tensor = transform(image).unsqueeze(0).to(device)
return img_tensor
# Apply feature filters
def apply_filters(image, brightness, contrast, hue):
"""Adjust Brightness, Contrast, and Hue of the input image."""
image = image.convert("RGB") # Ensure RGB mode
# Adjust brightness
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(brightness)
# Adjust contrast
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(contrast)
# Adjust hue (convert to HSV, modify, and convert back)
image = np.array(image)
hsv_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32)
hsv_image[..., 0] = (hsv_image[..., 0] + hue * 180) % 180 # Adjust hue
image = cv2.cvtColor(hsv_image.astype(np.uint8), cv2.COLOR_HSV2RGB)
return Image.fromarray(image)
# Superimposition function
def superimpose_images(base_image, overlay_image, alpha):
"""Superimpose overlay_image onto base_image with a given alpha blend."""
if overlay_image is None:
return base_image # No overlay, return base image as is
# Resize overlay image to match base image
overlay_image = overlay_image.resize(base_image.size)
# Convert to numpy arrays
base_array = np.array(base_image).astype(float)
overlay_array = np.array(overlay_image).astype(float)
# Blend images
blended_array = (1 - alpha) * base_array + alpha * overlay_array
blended_array = np.clip(blended_array, 0, 255).astype(np.uint8)
return Image.fromarray(blended_array)
def generate_adversarial(input_image, orig_pred, epsilon=20/255, steps=500):
"""Generate adversarial example"""
input_image = transform_image(input_image)
delta = torch.zeros_like(input_image, requires_grad=True)
opt = optim.SGD([delta], lr=2e-1, momentum=0.9)
for _ in range(steps):
perturbed = torch.clamp(input_image + delta, 0.0, 1.0)
output = model(perturbed)
loss = -F.cross_entropy(output, torch.tensor([orig_pred], device=device))
print(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
delta.data.clamp_(-epsilon, epsilon)
x = input_image + delta # Compute the raw sum
x_min = x.amin(dim=(1, 2, 3), keepdim=True) # Per-image min
x_max = x.amax(dim=(1, 2, 3), keepdim=True) # Per-image max
output = (x - x_min) / (x_max - x_min + 1e-8) # Avoid division by zero
# return output
return output
def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_switch):
"""Main prediction function"""
if image is None:
return None, None, None
orig_size = image.size # Get original size (width, height)
# Apply preprocessing
processed = apply_filters(image, brightness, contrast, hue)
final_image = superimpose_images(processed, overlay_image, alpha)
# Generate adversarial if enabled
if adversarial_switch:
with torch.no_grad():
orig_out = model(transform_image(final_image))
orig_pred = torch.argmax(orig_out).item()
adv_tensor_01 = generate_adversarial(final_image, orig_pred)
final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
final_display = final_display.resize(orig_size) # Resize back to original size
model_input = transform_image(final_display)
else:
resized_image = final_image.resize((224, 224))
final_display = resized_image.resize(orig_size)
model_input = transform_image(resized_image)
# Get predictions
with torch.no_grad():
output = model(model_input)
probs = F.softmax(output, dim=1).cpu().numpy()[0]
# Reset Grad-CAM activations before generating new heatmap
gradcam.activations.clear()
gradcam.gradients.clear()
# Generate Grad-CAM
heatmap, _ = gradcam.generate(model_input)
final_np = np.array(final_display)
heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
# Create plot
fig, ax = plt.subplots(figsize=(6, 4))
top5_idx = np.argsort(probs)[-5:][::-1]
ax.bar([class_labels[i] for i in top5_idx], probs[top5_idx], color='skyblue')
ax.set_ylabel("Probability"), ax.set_title("Class Probabilities")
plt.xticks(rotation=45, ha='right', fontsize=8)
plt.tight_layout()
return final_display, Image.fromarray(superimposed), fig
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("<h2 style='text-align: center;'>ResNet Classifier with Adversarial Attacks</h2>")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image")
overlay_input = gr.Image(type="pil", label="Overlay Image (Optional)")
brightness = gr.Slider(0.5, 2.0, value=1.0, label="Brightness")
contrast = gr.Slider(0.5, 2.0, value=1.0, label="Contrast")
hue = gr.Slider(-0.5, 0.5, value=0.0, label="Hue")
alpha = gr.Slider(0.0, 1.0, value=0.5, label="Overlay Alpha")
adversarial_switch = gr.Checkbox(label="Add Adversarial Noise")
with gr.Column():
processed_image = gr.Image(label="Processed Image")
gradcam_output = gr.Image(label="GradCAM Overlay")
bar_chart = gr.Plot(label="Predictions")
inputs = [image_input, brightness, contrast, hue, overlay_input, alpha, adversarial_switch]
outputs = [processed_image, gradcam_output, bar_chart]
for component in [image_input, overlay_input, brightness, contrast, hue, alpha, adversarial_switch]:
component.change(predict, inputs=inputs, outputs=outputs)
interface.launch() |