File size: 8,562 Bytes
739cf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb008d8
 
 
739cf2e
 
 
 
eb008d8
 
 
 
 
 
 
 
 
 
739cf2e
907b541
739cf2e
 
 
 
 
 
 
907b541
739cf2e
 
 
 
 
 
 
 
 
 
907b541
739cf2e
 
 
eb008d8
739cf2e
 
 
907b541
739cf2e
eb008d8
 
 
 
 
 
907b541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739cf2e
 
907b541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739cf2e
 
907b541
739cf2e
 
4ee5487
 
 
739cf2e
 
 
907b541
739cf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cb44b
1b630c7
21cb44b
739cf2e
 
b717308
739cf2e
 
907b541
 
739cf2e
 
907b541
739cf2e
 
b717308
 
 
739cf2e
907b541
 
 
 
 
 
 
b717308
 
 
 
739cf2e
eb008d8
739cf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
b717308
 
 
907b541
b717308
907b541
 
b717308
 
 
907b541
 
 
 
 
 
 
 
739cf2e
 
 
907b541
739cf2e
907b541
 
 
 
 
 
 
 
 
739cf2e
907b541
 
 
 
 
 
 
739cf2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import logging
from pathlib import Path

import gradio as gr
from datasets import Dataset
from gradio_log import Log
from huggingface_hub import DatasetCard
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import MetadataMode
from tqdm.auto import tqdm

log_file = "logs.txt"
Path(log_file).touch(exist_ok=True)

logging.basicConfig(filename="logs.txt", level=logging.INFO)
logging.getLogger().addHandler(logging.FileHandler(log_file))


def load_corpus(
    files, chunk_size=256, chunk_overlap=0, verbose=True, split_sentences=True
):
    if verbose:
        gr.Info("Loading files...")
    reader = SimpleDirectoryReader(input_files=files)
    docs = reader.load_data()
    if split_sentences is False:
        gr.Info(
            "Skipping sentence splitting. Each file will be a single row in the dataset."
        )
        return {doc.id_: doc.text for doc in docs}
    if split_sentences:
        return split_corpus(verbose, docs, chunk_size, chunk_overlap)


def split_corpus(verbose, docs, chunk_size, chunk_overlap):
    if verbose:
        gr.Info(f"Loaded {len(docs)} docs")

    parser = SentenceSplitter.from_defaults(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)

    if verbose:
        gr.Info(f"Parsed {len(nodes)} nodes")

    docs = {
        node.node_id: node.get_content(metadata_mode=MetadataMode.NONE)
        for node in tqdm(nodes)
    }
    # remove empty docs
    docs = {k: v for k, v in docs.items() if v}
    return docs


def upload_and_preview(
    files,
    chunk_size: int = 256,
    chunk_overlap: int = 0,
    split_sentences: bool = True,
):
    print("loading files")
    file_paths = [file.name for file in files]

    print("parsing into sentences")
    corpus = load_corpus(
        file_paths,
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        split_sentences=split_sentences,
    )
    gr.Info("Creating dataset")
    dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
    message = f"Files uploaded and dataset preview created:\n - {len(dataset)} rows"

    state = {
        "file_paths": file_paths,
        "dataset": dataset,
        "chunk_size": chunk_size,
        "chunk_overlap": chunk_overlap,
    }

    return state, dataset.to_pandas(), message


def preview_dataset(
    state,
    chunk_size: int = 256,
    chunk_overlap: int = 0,
    split_sentences: bool = True,
):
    if not state.get("file_paths"):
        raise gr.Error("Please upload files first.")

    print("parsing into sentences")
    corpus = load_corpus(
        state["file_paths"],
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        split_sentences=split_sentences,
    )
    print("Creating dataset")
    dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
    message = f"Dataset preview updated:\n - {len(dataset)} rows"

    state["dataset"] = dataset
    state["chunk_size"] = chunk_size
    state["chunk_overlap"] = chunk_overlap

    return state, dataset.to_pandas(), message


def upload_to_hub(
    state,
    hub_id: str = None,
    private: bool = False,
    oauth_token: gr.OAuthToken = None,
):
    if not state.get("dataset"):
        raise gr.Error("Please preview the dataset first.")

    dataset = state["dataset"]
    chunk_size = state["chunk_size"]
    chunk_overlap = state["chunk_overlap"]

    message = f"Dataset has: \n - {len(dataset)} rows"
    if hub_id:
        if oauth_token is not None:
            gr.Info("Uploading dataset to the Hugging Face Hub...")
            dataset.push_to_hub(hub_id, token=oauth_token.token, private=private)
            update_dataset_card(hub_id, oauth_token.token, chunk_size, chunk_overlap)
            message += (
                f"\n\nUploaded to [{hub_id}](https://huggingface.co/datasets/{hub_id})"
            )
        else:
            raise gr.Error("Please login to Hugging Face Hub to push to hub")

    return message


def update_dataset_card(
    hub_id,
    token,
    chunk_size,
    chunk_overlap,
):
    card = DatasetCard.load(hub_id, token=token)
    if not card.text:
        # add template description to card text
        card.text += f"""This dataset was created using [Corpus Creator](https://huggingface.co/spaces/davanstrien/corpus-creator). This dataset was created by parsing a corpus of text files into chunks of sentences using Llama Index.
        This processing was done with a chunk size of {chunk_size} and a chunk overlap of {chunk_overlap}."""
        tags = card.data.get("tags", [])
        tags.append("corpus-creator")
        card.data["tags"] = tags
        card.push_to_hub(hub_id, token=token)


description = """
Corpus Creator is a tool designed to help you easily convert a collection of text files into a dataset suitable for various natural language processing (NLP) tasks.
In particular the app is focused on splitting texts into chunks of a specified size and overlap. This can be useful for preparing data for synthetic data generation, pipelines or annotation tasks.

See an [example dataset](https://huggingface.co/datasets/davanstrien/MOH-Bethnal-Green) created using this tool starting from a collection of plain text files. 

The resulting text chunks are stored in a dataset that can be previewed and uploaded to the Hugging Face Hub for easy sharing and access by the community.
The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/modules/?h=sentencesplitter#sentencesplitter) classes. 
"""

with gr.Blocks() as demo:
    state = gr.State({})

    gr.HTML(
        """<h1 style='text-align: center;'> Corpus Creator</h1>
        <center><i> &#128193; From random files to a Hugging Face dataset in a few steps &#128193; </i></center>"""
    )
    gr.Markdown(description)
    gr.Markdown(
        "### 1. Upload Files\nClick 'Upload Files' to select text file(s). A preview will generate automatically"
    )
    with gr.Row():
        upload_button = gr.File(
            file_types=["text"],
            file_count="multiple",
            height=50,
            interactive=True,
            label="Upload Files",
        )
    gr.Markdown("""
    ### 2. Adjust Parameters for Chunking Text (Optional)
    Customize the chunk size, overlap, and sentence splitting option according to your requirements.
    """)
    with gr.Row():
        split_sentences = gr.Checkbox(True, label="Split sentences?")
        chunk_size = gr.Number(
            256,
            label="Chunk size (size to split text into)",
            minimum=10,
            maximum=4096,
            step=1,
        )
        chunk_overlap = gr.Number(
            0,
            label="Chunk overlap (overlap size between chunks)",
            minimum=0,
            maximum=4096,
            step=1,
        )
    gr.Markdown(
        "### 3. Update Preview\nClick 'Update Preview' to see changes based on new parameters."
    )
    update_preview_button = gr.Button("Update Preview")

    corpus_preview_df = gr.DataFrame(label="Dataset Preview")
    preview_summary = gr.Markdown()
    gr.Markdown("""### 4. Upload to Hub
    After adjusting parameters and previewing the dataset, you can upload it to the Hugging Face Hub. Make sure to sign in to your Hugging Face account. Specify the Hub ID and choose whether to make the dataset private. Click 'Upload to Hub' to complete the process.
    """)
    with gr.Row():
        gr.LoginButton()
        with gr.Column():
            hub_id = gr.Textbox(value=None, label="Hub ID")
            private = gr.Checkbox(False, label="Upload dataset to a private repo?")

    upload_hub_button = gr.Button("Upload to Hub")
    upload_summary = gr.Markdown()

    with gr.Accordion("detailed logs", open=False):
        Log(log_file, dark=True, xterm_font_size=12)

    upload_button.upload(
        upload_and_preview,
        inputs=[upload_button, chunk_size, chunk_overlap, split_sentences],
        outputs=[state, corpus_preview_df, preview_summary],
    )

    update_preview_button.click(
        preview_dataset,
        inputs=[state, chunk_size, chunk_overlap, split_sentences],
        outputs=[state, corpus_preview_df, preview_summary],
    )

    upload_hub_button.click(
        upload_to_hub,
        inputs=[state, hub_id, private],
        outputs=[upload_summary],
    )

demo.launch(debug=True)