File size: 9,819 Bytes
e5a1544 d4ac8c5 e5a1544 5f27df7 e5a1544 d4ac8c5 e5a1544 5148899 e5a1544 5f27df7 e5a1544 5148899 5f27df7 5148899 5f27df7 e5a1544 5148899 5f27df7 5148899 5f27df7 e5a1544 5f27df7 e5a1544 5148899 5f27df7 5148899 5f27df7 e5a1544 5148899 5f27df7 5148899 5f27df7 e5a1544 5f27df7 e5a1544 5148899 e421b40 5148899 565e309 5148899 565e309 5148899 e421b40 5148899 565e309 5148899 565e309 e421b40 5148899 e5a1544 5f27df7 e5a1544 5148899 2e20db1 5148899 e421b40 e5a1544 5148899 2e20db1 5148899 e421b40 5148899 2e20db1 5148899 e421b40 5148899 2e20db1 5148899 e421b40 5148899 a46f53e 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Constants
# -----------------------------
SKIP_RATE = 5 # Run heavy detection every 5 frames
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
# Facial Emotion Detection using FER (requires TensorFlow)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Define Analysis Functions with Frame Skipping
# -----------------------------
def analyze_posture(image):
"""
Processes an image from the webcam with MediaPipe Pose.
Runs heavy detection every SKIP_RATE frames; otherwise, returns last result.
"""
if not hasattr(analyze_posture, "counter"):
analyze_posture.counter = 0
analyze_posture.last_output = None
analyze_posture.counter += 1
# If first frame or time to run detection:
if analyze_posture.counter % SKIP_RATE == 0 or analyze_posture.last_output is None:
# Convert from PIL (RGB) to OpenCV BGR format
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
posture_result = "No posture detected"
pose_results = pose.process(frame_rgb)
if pose_results.pose_landmarks:
posture_result = "Posture detected"
mp_drawing.draw_landmarks(
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
result = (annotated_image, f"Posture Analysis: {posture_result}")
analyze_posture.last_output = result
return result
else:
# For frames in between, return last result
return analyze_posture.last_output
def analyze_emotion(image):
"""
Uses FER to detect facial emotions from the webcam image.
Runs heavy detection every SKIP_RATE frames.
"""
if not hasattr(analyze_emotion, "counter"):
analyze_emotion.counter = 0
analyze_emotion.last_output = None
analyze_emotion.counter += 1
if analyze_emotion.counter % SKIP_RATE == 0 or analyze_emotion.last_output is None:
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
emotion_text = f"{top_emotion} ({score:.2f})"
else:
emotion_text = "No face detected for emotion analysis"
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = (annotated_image, f"Emotion Analysis: {emotion_text}")
analyze_emotion.last_output = result
return result
else:
return analyze_emotion.last_output
def analyze_objects(image):
"""
Uses Faster R-CNN to detect objects in the webcam image.
Heavy detection is run every SKIP_RATE frames.
"""
if not hasattr(analyze_objects, "counter"):
analyze_objects.counter = 0
analyze_objects.last_output = None
analyze_objects.counter += 1
if analyze_objects.counter % SKIP_RATE == 0 or analyze_objects.last_output is None:
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
detected_boxes = detections["boxes"][detections["scores"] > threshold]
for box in detected_boxes:
box = box.int().cpu().numpy()
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
result = (annotated_image, f"Object Detection: {object_result}")
analyze_objects.last_output = result
return result
else:
return analyze_objects.last_output
def analyze_faces(image):
"""
Uses MediaPipe to detect faces in the webcam image.
Runs heavy detection every SKIP_RATE frames.
"""
if not hasattr(analyze_faces, "counter"):
analyze_faces.counter = 0
analyze_faces.last_output = None
analyze_faces.counter += 1
if analyze_faces.counter % SKIP_RATE == 0 or analyze_faces.last_output is None:
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
face_result = "No faces detected"
if face_results.detections:
face_result = f"Detected {len(face_results.detections)} face(s)"
h, w, _ = output_frame.shape
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
result = (annotated_image, f"Face Detection: {face_result}")
analyze_faces.last_output = result
return result
else:
return analyze_faces.last_output
# -----------------------------
# Custom CSS for a High-Tech Look (with white fonts)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #ffffff;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #ffffff;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
"""
# -----------------------------
# Create Individual Interfaces for Each Analysis (using real-time webcam input)
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe.",
live=True
)
emotion_interface = gr.Interface(
fn=analyze_emotion,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER.",
live=True
)
objects_interface = gr.Interface(
fn=analyze_objects,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN.",
live=True
)
faces_interface = gr.Interface(
fn=analyze_faces,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe.",
live=True
)
# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|