File size: 9,819 Bytes
e5a1544
 
 
 
 
d4ac8c5
e5a1544
 
 
 
5f27df7
 
 
 
 
e5a1544
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac8c5
 
 
e5a1544
 
 
5148899
e5a1544
 
 
5f27df7
e5a1544
 
5148899
 
5f27df7
 
5148899
5f27df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a1544
5148899
 
5f27df7
 
5148899
5f27df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a1544
5f27df7
e5a1544
5148899
 
5f27df7
 
5148899
5f27df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a1544
5148899
 
5f27df7
 
5148899
5f27df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a1544
 
5f27df7
e5a1544
5148899
 
 
 
e421b40
5148899
565e309
 
5148899
 
 
 
 
565e309
 
5148899
 
 
e421b40
5148899
565e309
5148899
 
 
 
565e309
e421b40
5148899
 
e5a1544
 
5f27df7
e5a1544
5148899
 
2e20db1
5148899
 
e421b40
 
e5a1544
 
5148899
 
2e20db1
5148899
 
e421b40
 
5148899
 
 
 
2e20db1
5148899
 
e421b40
 
5148899
 
 
 
2e20db1
5148899
 
e421b40
 
5148899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46f53e
565e309
5148899
e5a1544
5148899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER  # Facial emotion recognition

# -----------------------------
# Constants
# -----------------------------
SKIP_RATE = 5  # Run heavy detection every 5 frames

# -----------------------------
# Initialize Models and Helpers
# -----------------------------

# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils

# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)

# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
    weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])

# Facial Emotion Detection using FER (requires TensorFlow)
emotion_detector = FER(mtcnn=True)

# -----------------------------
# Define Analysis Functions with Frame Skipping
# -----------------------------

def analyze_posture(image):
    """
    Processes an image from the webcam with MediaPipe Pose.
    Runs heavy detection every SKIP_RATE frames; otherwise, returns last result.
    """
    if not hasattr(analyze_posture, "counter"):
        analyze_posture.counter = 0
        analyze_posture.last_output = None
    analyze_posture.counter += 1

    # If first frame or time to run detection:
    if analyze_posture.counter % SKIP_RATE == 0 or analyze_posture.last_output is None:
        # Convert from PIL (RGB) to OpenCV BGR format
        frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        output_frame = frame.copy()
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        posture_result = "No posture detected"
        pose_results = pose.process(frame_rgb)
        if pose_results.pose_landmarks:
            posture_result = "Posture detected"
            mp_drawing.draw_landmarks(
                output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
                mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
                mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
            )

        annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
        result = (annotated_image, f"Posture Analysis: {posture_result}")
        analyze_posture.last_output = result
        return result
    else:
        # For frames in between, return last result
        return analyze_posture.last_output

def analyze_emotion(image):
    """
    Uses FER to detect facial emotions from the webcam image.
    Runs heavy detection every SKIP_RATE frames.
    """
    if not hasattr(analyze_emotion, "counter"):
        analyze_emotion.counter = 0
        analyze_emotion.last_output = None
    analyze_emotion.counter += 1

    if analyze_emotion.counter % SKIP_RATE == 0 or analyze_emotion.last_output is None:
        frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        emotions = emotion_detector.detect_emotions(frame_rgb)
        if emotions:
            top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
            emotion_text = f"{top_emotion} ({score:.2f})"
        else:
            emotion_text = "No face detected for emotion analysis"
        annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        result = (annotated_image, f"Emotion Analysis: {emotion_text}")
        analyze_emotion.last_output = result
        return result
    else:
        return analyze_emotion.last_output

def analyze_objects(image):
    """
    Uses Faster R-CNN to detect objects in the webcam image.
    Heavy detection is run every SKIP_RATE frames.
    """
    if not hasattr(analyze_objects, "counter"):
        analyze_objects.counter = 0
        analyze_objects.last_output = None
    analyze_objects.counter += 1

    if analyze_objects.counter % SKIP_RATE == 0 or analyze_objects.last_output is None:
        frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        output_frame = frame.copy()
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image_pil = Image.fromarray(frame_rgb)
        img_tensor = obj_transform(image_pil)

        with torch.no_grad():
            detections = object_detection_model([img_tensor])[0]

        threshold = 0.8
        detected_boxes = detections["boxes"][detections["scores"] > threshold]
        for box in detected_boxes:
            box = box.int().cpu().numpy()
            cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)

        object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
        annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
        result = (annotated_image, f"Object Detection: {object_result}")
        analyze_objects.last_output = result
        return result
    else:
        return analyze_objects.last_output

def analyze_faces(image):
    """
    Uses MediaPipe to detect faces in the webcam image.
    Runs heavy detection every SKIP_RATE frames.
    """
    if not hasattr(analyze_faces, "counter"):
        analyze_faces.counter = 0
        analyze_faces.last_output = None
    analyze_faces.counter += 1

    if analyze_faces.counter % SKIP_RATE == 0 or analyze_faces.last_output is None:
        frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        output_frame = frame.copy()
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        face_results = face_detection.process(frame_rgb)

        face_result = "No faces detected"
        if face_results.detections:
            face_result = f"Detected {len(face_results.detections)} face(s)"
            h, w, _ = output_frame.shape
            for detection in face_results.detections:
                bbox = detection.location_data.relative_bounding_box
                x = int(bbox.xmin * w)
                y = int(bbox.ymin * h)
                box_w = int(bbox.width * w)
                box_h = int(bbox.height * h)
                cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)

        annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
        result = (annotated_image, f"Face Detection: {face_result}")
        analyze_faces.last_output = result
        return result
    else:
        return analyze_faces.last_output

# -----------------------------
# Custom CSS for a High-Tech Look (with white fonts)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
    background-color: #0e0e0e;
    color: #ffffff;
    font-family: 'Orbitron', sans-serif;
    margin: 0;
    padding: 0;
}
.gradio-container {
    background: linear-gradient(135deg, #1e1e2f, #3e3e55);
    border-radius: 10px;
    padding: 20px;
    max-width: 1200px;
    margin: auto;
}
.gradio-title {
    font-size: 2.5em;
    color: #ffffff;
    text-align: center;
    margin-bottom: 0.2em;
}
.gradio-description {
    font-size: 1.2em;
    text-align: center;
    margin-bottom: 1em;
    color: #ffffff;
}
"""

# -----------------------------
# Create Individual Interfaces for Each Analysis (using real-time webcam input)
# -----------------------------
posture_interface = gr.Interface(
    fn=analyze_posture,
    inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
    title="Posture Analysis",
    description="Detects your posture using MediaPipe.",
    live=True
)

emotion_interface = gr.Interface(
    fn=analyze_emotion,
    inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
    title="Emotion Analysis",
    description="Detects facial emotions using FER.",
    live=True
)

objects_interface = gr.Interface(
    fn=analyze_objects,
    inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
    title="Object Detection",
    description="Detects objects using a pretrained Faster R-CNN.",
    live=True
)

faces_interface = gr.Interface(
    fn=analyze_faces,
    inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
    title="Face Detection",
    description="Detects faces using MediaPipe.",
    live=True
)

# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
    interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
    tab_names=["Posture", "Emotion", "Objects", "Faces"]
)

# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
    gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
    gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
    tabbed_interface.render()

if __name__ == "__main__":
    demo.launch()