File size: 13,239 Bytes
e5a1544
 
 
 
 
473b2d5
0b4ab6d
 
 
e5a1544
5f27df7
ee83343
5f27df7
f3de933
4a53aae
2553966
0b4ab6d
 
 
 
 
 
 
 
 
 
 
b37a8e6
f3de933
e5a1544
f3de933
 
 
e5a1544
 
f3de933
b37a8e6
0b4ab6d
f3de933
 
 
b37a8e6
473b2d5
 
107dab2
0b4ab6d
 
 
 
 
 
f3de933
 
 
 
 
 
 
 
 
 
 
 
 
107dab2
f3de933
 
 
 
b37a8e6
e5a1544
f3de933
b37a8e6
f3de933
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a8e6
f3de933
 
 
107dab2
f3de933
 
 
 
473b2d5
 
 
 
5f27df7
f3de933
 
107dab2
f3de933
0b4ab6d
 
 
 
 
 
 
f3de933
0b4ab6d
 
 
 
f3de933
 
 
 
2553966
91863a8
fd8b339
6754f93
91863a8
1a94dbc
91863a8
 
fd8b339
 
 
 
91863a8
 
 
fd8b339
 
 
 
1a94dbc
91863a8
1a94dbc
91863a8
 
fd8b339
91863a8
 
fd8b339
 
 
 
 
 
 
 
 
 
 
 
4f14988
 
fd8b339
 
 
 
91863a8
 
 
 
fd8b339
91863a8
1a94dbc
 
0b4ab6d
 
 
 
 
91863a8
2553966
f3de933
2553966
f3de933
 
 
 
 
 
 
 
 
 
 
4f14988
4a53aae
f3de933
 
 
 
 
 
 
4f14988
4a53aae
f3de933
 
 
 
 
 
 
 
 
 
 
4f14988
e5a1544
 
9a89e03
e5a1544
5148899
 
0b4ab6d
5148899
fd8b339
5148899
0b4ab6d
5148899
0b4ab6d
5148899
fd8b339
4f14988
 
5148899
 
565e309
 
5148899
0b4ab6d
 
 
4f14988
5148899
0b4ab6d
dfc63b4
4f14988
 
 
fd8b339
5148899
73fbe68
 
 
 
 
5148899
e5a1544
 
f3de933
e5a1544
f3de933
 
 
 
0b4ab6d
 
 
f6a647b
e5a1544
 
5148899
f3de933
 
 
0b4ab6d
 
 
f6a647b
5148899
 
f3de933
 
 
 
0b4ab6d
 
 
4a53aae
5148899
 
91863a8
 
1a94dbc
 
 
 
fd8b339
 
 
 
 
0b4ab6d
1a94dbc
 
 
 
 
 
ea6f081
473b2d5
 
 
5148899
473b2d5
 
 
 
4f14988
473b2d5
 
 
 
 
4f14988
473b2d5
5148899
 
 
f3de933
5148899
73fbe68
5148899
fd8b339
07c5ca0
0b4ab6d
565e309
5148899
e5a1544
5148899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import mediapipe as mp
from fer import FER  # Facial emotion recognition
from ultralytics import YOLO  # YOLOv8 for face detection
from huggingface_hub import hf_hub_download
from supervision import Detections

# -----------------------------
# Configurations
# -----------------------------
SKIP_RATE = 1  # For image processing, always run the analysis
DESIRED_SIZE = (640, 480)

# -----------------------------
# Sample Images (Preset Suggested Photos)
# -----------------------------
SAMPLE_IMAGES = [
    "https://upload.wikimedia.org/wikipedia/commons/7/76/Daniel_Diermeier_2020_%28cropped%29.jpg",
    "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg/1200px-Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg",
    "https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/President_Barack_Obama.jpg/800px-President_Barack_Obama.jpg",
    "https://images.wsj.net/im-98527587?width=1280&size=1",
    "https://media.npr.org/assets/img/2023/11/28/dr.buolamwiniheadshot_c-naima-green-1-_custom-05cd4ce4570c688d00cc558d16c76745abd07539.png"
]

# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}

# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose and Drawing
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils

# Initialize the FER emotion detector (using the FER package)
emotion_detector = FER(mtcnn=True)

# -----------------------------
# Download YOLOv8 face detection model from Hugging Face
# -----------------------------
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
yolo_face_model = YOLO(model_path)

# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
    for connection in mp_pose.POSE_CONNECTIONS:
        start_idx, end_idx = connection
        if start_idx < len(landmarks) and end_idx < len(landmarks):
            start_point = landmarks[start_idx]
            end_point = landmarks[end_idx]
            cv2.line(raw_frame, start_point, end_point, (50, 205, 50), 2)
    for (x, y) in landmarks:
        cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
    return raw_frame

def draw_boxes_overlay(raw_frame, boxes, color):
    for (x1, y1, x2, y2) in boxes:
        cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
    return raw_frame

# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
    frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    h, w, _ = frame_bgr.shape
    frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
    small_h, small_w, _ = frame_bgr_small.shape
    frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
    pose_results = pose.process(frame_rgb_small)
    if pose_results.pose_landmarks:
        landmarks = []
        for lm in pose_results.pose_landmarks.landmark:
            x = int(lm.x * small_w * (w / small_w))
            y = int(lm.y * small_h * (h / small_h))
            landmarks.append((x, y))
        text = "Posture detected"
    else:
        landmarks = []
        text = "No posture detected"
    return landmarks, text

def compute_emotion_overlay(image):
    frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
    frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
    emotions = emotion_detector.detect_emotions(frame_rgb_small)
    if emotions:
        top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
        text = f"{top_emotion} ({score:.2f})"
    else:
        text = "No face detected"
    return text

def compute_faces_overlay(image):
    """
    Uses the YOLOv8 face detection model from Hugging Face.
    Processes the input image and returns bounding boxes using Supervision Detections.
    """
    pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
    output = yolo_face_model(pil_image)
    results = Detections.from_ultralytics(output[0])
    boxes = []
    if results.xyxy.shape[0] > 0:
        for box in results.xyxy:
            x1, y1, x2, y2 = map(int, box)
            boxes.append((x1, y1, x2, y2))
        text = f"Detected {len(boxes)} face(s)"
    else:
        text = "No faces detected"
    return boxes, text

# -----------------------------
# New Facemesh Functions (with connected red lines and mask output)
# (Only changes made here are to add a slider-controlled confidence)
# -----------------------------
def compute_facemesh_overlay(image, confidence=0.5):
    """
    Uses MediaPipe Face Mesh to detect and draw facial landmarks.
    Draws green dots for landmarks and connects them with thin red lines.
    Returns two images:
      - annotated: the original image overlaid with the facemesh
      - mask: a black background image with only the facemesh drawn
    """
    frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    h, w, _ = frame_bgr.shape
    # Create a copy for annotated output and a black mask
    annotated = frame_bgr.copy()
    mask = np.zeros_like(frame_bgr)
    
    # Initialize Face Mesh in static mode with adjustable confidence
    face_mesh = mp.solutions.face_mesh.FaceMesh(
        static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=confidence
    )
    results = face_mesh.process(cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB))
    
    if results.multi_face_landmarks:
        for face_landmarks in results.multi_face_landmarks:
            # Convert landmarks to pixel coordinates
            landmark_points = []
            for lm in face_landmarks.landmark:
                x = int(lm.x * w)
                y = int(lm.y * h)
                landmark_points.append((x, y))
            # Draw thin red lines between connected landmarks using the FACEMESH_TESSELATION
            for connection in mp.solutions.face_mesh.FACEMESH_TESSELATION:
                start_idx, end_idx = connection
                if start_idx < len(landmark_points) and end_idx < len(landmark_points):
                    pt1 = landmark_points[start_idx]
                    pt2 = landmark_points[end_idx]
                    cv2.line(annotated, pt1, pt2, (255, 0, 0), 1)
                    cv2.line(mask, pt1, pt2, (255, 0, 0), 1)
            # Draw green dots for each landmark
            for pt in landmark_points:
                cv2.circle(annotated, pt, 2, (0, 255, 0), -1)
                cv2.circle(mask, pt, 2, (0, 255, 0), -1)
        text = "Facemesh detected"
    else:
        text = "No facemesh detected"
    face_mesh.close()
    return annotated, mask, text

def analyze_facemesh(image, confidence):
    annotated_image, mask_image, text = compute_facemesh_overlay(image, confidence)
    return (
        annotated_image,
        mask_image,
        f"<div style='color: #00ff00 !important;'>Facemesh Analysis: {text}</div>"
    )

# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
    global posture_cache
    posture_cache["counter"] += 1
    current_frame = np.array(image)
    if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
        landmarks, text = compute_posture_overlay(image)
        posture_cache["landmarks"] = landmarks
        posture_cache["text"] = text
    output = current_frame.copy()
    if posture_cache["landmarks"]:
        output = draw_posture_overlay(output, posture_cache["landmarks"])
    return output, f"<div style='color: #00ff00 !important;'>Posture Analysis: {posture_cache['text']}</div>"

def analyze_emotion_current(image):
    global emotion_cache
    emotion_cache["counter"] += 1
    current_frame = np.array(image)
    if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
        text = compute_emotion_overlay(image)
        emotion_cache["text"] = text
    return current_frame, f"<div style='color: #00ff00 !important;'>Emotion Analysis: {emotion_cache['text']}</div>"

def analyze_faces_current(image):
    global faces_cache
    faces_cache["counter"] += 1
    current_frame = np.array(image)
    if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
        boxes, text = compute_faces_overlay(image)
        faces_cache["boxes"] = boxes
        faces_cache["text"] = text
    output = current_frame.copy()
    if faces_cache["boxes"]:
        output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
    return output, f"<div style='color: #00ff00 !important;'>Face Detection: {faces_cache['text']}</div>"

# -----------------------------
# Custom CSS (Revamped High-Contrast Neon Theme with Green Glows removed from text)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');

body {
    background-color: #121212;
    font-family: 'Orbitron', sans-serif;
    color: #00ff00 !important;
}

.gradio-container {
    background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
    border: 2px solid #00ff00;
    box-shadow: 0 0 15px #00ff00;
    border-radius: 10px;
    padding: 20px;
    max-width: 1200px;
    margin: auto;
}

.gradio-title, .gradio-description, .tab-item, .tab-item *,
label, .label, .wrap .label, .wrap .input, .wrap .output, .wrap .description {
    color: #00ff00 !important;
}

input, button, .output {
    border: 1px solid #00ff00;
    box-shadow: 0 0 8px #00ff00;
    color: #00ff00;
    background-color: #1a1a1a;
}

/* Added higher specificity override for all elements within the gradio container */
.gradio-container * {
    color: #00ff00 !important;
}
"""

# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
    fn=analyze_posture_current,
    inputs=gr.Image(label="Upload an Image for Posture Analysis"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
    title="<div style='color:#00ff00;'>Posture",
    description="<div style='color:#00ff00;'>Detects posture using MediaPipe with connector lines.</div>",
    examples=SAMPLE_IMAGES,  # clickable examples at bottom
    live=False
)

emotion_interface = gr.Interface(
    fn=analyze_emotion_current,
    inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
    title="<div style='color:#00ff00;'>Emotion",
    description="<div style='color:#00ff00;'>Detects facial emotions using FER.</div>",
    examples=SAMPLE_IMAGES,
    live=False
)

faces_interface = gr.Interface(
    fn=analyze_faces_current,
    inputs=gr.Image(label="Upload an Image for Face Detection"),
    outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
    title="<div style='color:#00ff00;'>Faces",
    description="<div style='color:#00ff00;'>Detects faces using fine-tuned YOLOv8 model.</div>",
    examples=SAMPLE_IMAGES,
    live=False
)

facemesh_interface = gr.Interface(
    fn=analyze_facemesh,
    inputs=[
        gr.Image(label="Upload an Image for Facemesh"),
        gr.Slider(0.0, 1.0, value=0.5, label="Detection Confidence", elem_id="confidence_slider")
    ],
    outputs=[
        gr.Image(type="numpy", label="Annotated Output"),
        gr.Image(type="numpy", label="Mask Output"),
        gr.HTML(label="Facemesh Analysis")
    ],
    title="<div style='color:#00ff00;'>Facemesh",
    description="""
    <div style='color:#00ff00;'>
        Detects facial landmarks using MediaPipe Face Mesh.
        <button onclick="document.getElementById('confidence_slider').value = 0.5; document.getElementById('confidence_slider').dispatchEvent(new Event('change'))" style="margin-left:10px;">Reset to Default</button>
    </div>
    """,
    examples=[[img, 0.5] for img in SAMPLE_IMAGES],
    live=False
)

tabbed_interface = gr.TabbedInterface(
    interface_list=[
        posture_interface,
        emotion_interface,
        faces_interface,
        facemesh_interface
    ],
    tab_names=[
        "Posture",
        "Emotion",
        "Faces",
        "Facemesh"
    ]
)

# -----------------------------
# Wrap in a Blocks Layout and Launch
# -----------------------------
demo = gr.Blocks(css=custom_css, theme=None)
with demo:
    gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
    gr.Markdown("<p class='gradio-description'>Upload an image to run analysis for posture, emotions, faces, and facemesh landmarks.</p>")
    
    tabbed_interface.render()

if __name__ == "__main__":
    demo.launch()