Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Builder class for preparing tf.train.Example.""" | |
# https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7 | |
from __future__ import annotations | |
from typing import Mapping, Sequence, Union | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]] | |
_to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v | |
_to_bytes = lambda v: v.encode() if isinstance(v, str) else v | |
_to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v))) | |
class TfExampleBuilder(object): | |
"""Builder class for preparing tf.train.Example. | |
Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example. | |
Example usage: | |
>>> example_builder = TfExampleBuilder() | |
>>> example = ( | |
example_builder.add_bytes_feature('feature_a', 'foobarbaz') | |
.add_ints_feature('feature_b', [1, 2, 3]) | |
.example) | |
""" | |
def __init__(self) -> None: | |
self._example = tf.train.Example() | |
def example(self) -> tf.train.Example: | |
"""Returns a copy of the generated tf.train.Example proto.""" | |
return self._example | |
def serialized_example(self) -> str: | |
"""Returns a serialized string of the generated tf.train.Example proto.""" | |
return self._example.SerializeToString() | |
def set(self, example: tf.train.Example) -> TfExampleBuilder: | |
"""Sets the example.""" | |
self._example = example | |
return self | |
def reset(self) -> TfExampleBuilder: | |
"""Resets the example to an empty proto.""" | |
self._example = tf.train.Example() | |
return self | |
###### Basic APIs for primitive data types ###### | |
def add_feature_dict( | |
self, feature_dict: Mapping[str, tf.train.Feature]) -> TfExampleBuilder: | |
"""Adds the predefined `feature_dict` to the example. | |
Note: Please prefer to using feature-type-specific methods. | |
Args: | |
feature_dict: A dictionary from tf.Example feature key to | |
tf.train.Feature. | |
Returns: | |
The builder object for subsequent method calls. | |
""" | |
for k, v in feature_dict.items(): | |
self._example.features.feature[k].CopyFrom(v) | |
return self | |
def add_feature(self, key: str, | |
feature: tf.train.Feature) -> TfExampleBuilder: | |
"""Adds predefined `feature` with `key` to the example. | |
Args: | |
key: String key of the feature. | |
feature: The feature to be added to the example. | |
Returns: | |
The builder object for subsequent method calls. | |
""" | |
self._example.features.feature[key].CopyFrom(feature) | |
return self | |
def add_bytes_feature(self, key: str, | |
value: BytesValueType) -> TfExampleBuilder: | |
"""Adds byte(s) or string(s) with `key` to the example. | |
Args: | |
key: String key of the feature. | |
value: The byte(s) or string(s) to be added to the example. | |
Returns: | |
The builder object for subsequent method calls. | |
""" | |
return self.add_feature( | |
key, | |
tf.train.Feature( | |
bytes_list=tf.train.BytesList(value=_to_bytes_array(value)))) | |
def add_ints_feature(self, key: str, | |
value: Union[int, Sequence[int]]) -> TfExampleBuilder: | |
"""Adds integer(s) with `key` to the example. | |
Args: | |
key: String key of the feature. | |
value: The integer(s) to be added to the example. | |
Returns: | |
The builder object for subsequent method calls. | |
""" | |
return self.add_feature( | |
key, | |
tf.train.Feature(int64_list=tf.train.Int64List(value=_to_array(value)))) | |
def add_floats_feature( | |
self, key: str, value: Union[float, Sequence[float]]) -> TfExampleBuilder: | |
"""Adds float(s) with `key` to the example. | |
Args: | |
key: String key of the feature. | |
value: The float(s) to be added to the example. | |
Returns: | |
The builder object for subsequent method calls. | |
""" | |
return self.add_feature( | |
key, | |
tf.train.Feature(float_list=tf.train.FloatList(value=_to_array(value)))) | |