ASL-MoViNet-T5-translator / official /core /tf_example_builder.py
deanna-emery's picture
updates
93528c6
raw
history blame
4.63 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Builder class for preparing tf.train.Example."""
# https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7
from __future__ import annotations
from typing import Mapping, Sequence, Union
import numpy as np
import tensorflow as tf, tf_keras
BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]]
_to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v
_to_bytes = lambda v: v.encode() if isinstance(v, str) else v
_to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v)))
class TfExampleBuilder(object):
"""Builder class for preparing tf.train.Example.
Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example.
Example usage:
>>> example_builder = TfExampleBuilder()
>>> example = (
example_builder.add_bytes_feature('feature_a', 'foobarbaz')
.add_ints_feature('feature_b', [1, 2, 3])
.example)
"""
def __init__(self) -> None:
self._example = tf.train.Example()
@property
def example(self) -> tf.train.Example:
"""Returns a copy of the generated tf.train.Example proto."""
return self._example
@property
def serialized_example(self) -> str:
"""Returns a serialized string of the generated tf.train.Example proto."""
return self._example.SerializeToString()
def set(self, example: tf.train.Example) -> TfExampleBuilder:
"""Sets the example."""
self._example = example
return self
def reset(self) -> TfExampleBuilder:
"""Resets the example to an empty proto."""
self._example = tf.train.Example()
return self
###### Basic APIs for primitive data types ######
def add_feature_dict(
self, feature_dict: Mapping[str, tf.train.Feature]) -> TfExampleBuilder:
"""Adds the predefined `feature_dict` to the example.
Note: Please prefer to using feature-type-specific methods.
Args:
feature_dict: A dictionary from tf.Example feature key to
tf.train.Feature.
Returns:
The builder object for subsequent method calls.
"""
for k, v in feature_dict.items():
self._example.features.feature[k].CopyFrom(v)
return self
def add_feature(self, key: str,
feature: tf.train.Feature) -> TfExampleBuilder:
"""Adds predefined `feature` with `key` to the example.
Args:
key: String key of the feature.
feature: The feature to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
self._example.features.feature[key].CopyFrom(feature)
return self
def add_bytes_feature(self, key: str,
value: BytesValueType) -> TfExampleBuilder:
"""Adds byte(s) or string(s) with `key` to the example.
Args:
key: String key of the feature.
value: The byte(s) or string(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(
bytes_list=tf.train.BytesList(value=_to_bytes_array(value))))
def add_ints_feature(self, key: str,
value: Union[int, Sequence[int]]) -> TfExampleBuilder:
"""Adds integer(s) with `key` to the example.
Args:
key: String key of the feature.
value: The integer(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(int64_list=tf.train.Int64List(value=_to_array(value))))
def add_floats_feature(
self, key: str, value: Union[float, Sequence[float]]) -> TfExampleBuilder:
"""Adds float(s) with `key` to the example.
Args:
key: String key of the feature.
value: The float(s) to be added to the example.
Returns:
The builder object for subsequent method calls.
"""
return self.add_feature(
key,
tf.train.Feature(float_list=tf.train.FloatList(value=_to_array(value))))