Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Test for image detection export lib.""" | |
import io | |
import os | |
from absl.testing import parameterized | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf, tf_keras | |
from official.core import exp_factory | |
from official.vision import registry_imports # pylint: disable=unused-import | |
from official.vision.serving import detection | |
class DetectionExportTest(tf.test.TestCase, parameterized.TestCase): | |
def _get_detection_module( | |
self, | |
experiment_name, | |
input_type, | |
outer_boxes_scale=1.0, | |
apply_nms=True, | |
normalized_coordinates=False, | |
nms_version='batched', | |
output_intermediate_features=False, | |
): | |
params = exp_factory.get_exp_config(experiment_name) | |
params.task.model.outer_boxes_scale = outer_boxes_scale | |
params.task.model.backbone.resnet.model_id = 18 | |
params.task.model.detection_generator.apply_nms = apply_nms | |
if normalized_coordinates: | |
params.task.export_config.output_normalized_coordinates = True | |
params.task.model.detection_generator.nms_version = nms_version | |
if output_intermediate_features: | |
params.task.export_config.output_intermediate_features = True | |
detection_module = detection.DetectionModule( | |
params, | |
batch_size=1, | |
input_image_size=[640, 640], | |
input_type=input_type) | |
return detection_module | |
def _export_from_module(self, module, input_type, save_directory): | |
signatures = module.get_inference_signatures( | |
{input_type: 'serving_default'}) | |
tf.saved_model.save(module, save_directory, signatures=signatures) | |
def _get_dummy_input(self, input_type, batch_size, image_size): | |
"""Gets dummy input for the given input type.""" | |
h, w = image_size | |
if input_type == 'image_tensor': | |
return tf.zeros((batch_size, h, w, 3), dtype=np.uint8) | |
elif input_type == 'image_bytes': | |
image = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8)) | |
byte_io = io.BytesIO() | |
image.save(byte_io, 'PNG') | |
return [byte_io.getvalue() for b in range(batch_size)] | |
elif input_type == 'tf_example': | |
image_tensor = tf.zeros((h, w, 3), dtype=tf.uint8) | |
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy() | |
example = tf.train.Example( | |
features=tf.train.Features( | |
feature={ | |
'image/encoded': | |
tf.train.Feature( | |
bytes_list=tf.train.BytesList(value=[encoded_jpeg])), | |
})).SerializeToString() | |
return [example for b in range(batch_size)] | |
elif input_type == 'tflite': | |
return tf.zeros((batch_size, h, w, 3), dtype=np.float32) | |
def test_export( | |
self, | |
input_type, | |
experiment_name, | |
image_size, | |
outer_boxes_scale=1.0, | |
nms_version='batched', | |
): | |
tmp_dir = self.get_temp_dir() | |
module = self._get_detection_module( | |
experiment_name, input_type, outer_boxes_scale, nms_version) | |
self._export_from_module(module, input_type, tmp_dir) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb'))) | |
self.assertTrue( | |
os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index'))) | |
self.assertTrue( | |
os.path.exists( | |
os.path.join(tmp_dir, 'variables', | |
'variables.data-00000-of-00001'))) | |
imported = tf.saved_model.load(tmp_dir) | |
detection_fn = imported.signatures['serving_default'] | |
images = self._get_dummy_input( | |
input_type, batch_size=1, image_size=image_size) | |
signatures = module.get_inference_signatures( | |
{input_type: 'serving_default'}) | |
expected_outputs = signatures['serving_default'](tf.constant(images)) | |
outputs = detection_fn(tf.constant(images)) | |
self.assertAllEqual(outputs['detection_boxes'].numpy(), | |
expected_outputs['detection_boxes'].numpy()) | |
# Outer boxes have not been supported in RetinaNet models. | |
if 'retinanet' not in experiment_name: | |
if module.params.task.model.include_mask and outer_boxes_scale > 1.0: | |
self.assertAllEqual(outputs['detection_outer_boxes'].numpy(), | |
expected_outputs['detection_outer_boxes'].numpy()) | |
self.assertAllEqual(outputs['detection_classes'].numpy(), | |
expected_outputs['detection_classes'].numpy()) | |
self.assertAllEqual(outputs['detection_scores'].numpy(), | |
expected_outputs['detection_scores'].numpy()) | |
self.assertAllEqual(outputs['num_detections'].numpy(), | |
expected_outputs['num_detections'].numpy()) | |
def test_build_model_pass_with_none_batch_size(self, experiment_type): | |
params = exp_factory.get_exp_config(experiment_type) | |
detection.DetectionModule( | |
params, batch_size=None, input_image_size=[640, 640]) | |
def test_export_retinanet_with_intermediate_features(self): | |
tmp_dir = self.get_temp_dir() | |
input_type = 'image_tensor' | |
module = self._get_detection_module( | |
'retinanet_resnetfpn_coco', | |
input_type, | |
output_intermediate_features=True, | |
) | |
self._export_from_module(module, input_type, tmp_dir) | |
imported = tf.saved_model.load(tmp_dir) | |
detection_fn = imported.signatures['serving_default'] | |
images = self._get_dummy_input( | |
input_type, batch_size=1, image_size=[384, 384] | |
) | |
outputs = detection_fn(tf.constant(images)) | |
self.assertContainsSubset( | |
{ | |
'backbone_3', | |
'backbone_4', | |
'backbone_5', | |
'decoder_3', | |
'decoder_4', | |
'decoder_5', | |
'decoder_6', | |
'decoder_7', | |
}, | |
outputs.keys(), | |
) | |
def test_export_normalized_coordinates_no_nms( | |
self, | |
input_type, | |
experiment_name, | |
image_size, | |
): | |
tmp_dir = self.get_temp_dir() | |
module = self._get_detection_module( | |
experiment_name, | |
input_type, | |
apply_nms=False, | |
normalized_coordinates=True, | |
) | |
self._export_from_module(module, input_type, tmp_dir) | |
imported = tf.saved_model.load(tmp_dir) | |
detection_fn = imported.signatures['serving_default'] | |
images = self._get_dummy_input( | |
input_type, batch_size=1, image_size=image_size | |
) | |
outputs = detection_fn(tf.constant(images)) | |
min_values = tf.math.reduce_min(outputs['decoded_boxes']) | |
max_values = tf.math.reduce_max(outputs['decoded_boxes']) | |
self.assertAllGreaterEqual( | |
min_values.numpy(), tf.zeros_like(min_values).numpy() | |
) | |
self.assertAllLessEqual( | |
max_values.numpy(), tf.ones_like(max_values).numpy() | |
) | |
if __name__ == '__main__': | |
tf.test.main() | |