Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import numpy as np | |
import librosa | |
# Load pre-trained models | |
speech_to_text_model = load_model('speech_to_text_model.h5') | |
translation_model = load_model('translation_model.h5') | |
def preprocess_audio(file_path): | |
# Load and preprocess the audio file | |
audio, sr = librosa.load(file_path, sr=16000) | |
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13) | |
return np.expand_dims(mfccs, axis=0) | |
def translate_speech_to_text(audio_file): | |
# Preprocess the audio file | |
audio_features = preprocess_audio(audio_file) | |
# Predict text from audio | |
predicted_text = speech_to_text_model.predict(audio_features) | |
# Translate text | |
translated_text = translation_model.predict([predicted_text]) | |
return translated_text | |
def is_after_six_pm(): | |
current_time = datetime.now() | |
return current_time.hour >= 18 | |
def main(audio_file): | |
if is_after_six_pm(): | |
translated_text = translate_speech_to_text(audio_file) | |
print("Translated Text:", translated_text) | |
else: | |
print("Service available only after 6 PM IST.") | |
# Example usage | |
audio_file_path = 'path/to/your/audiofile.wav' | |
main(audio_file_path) | |