Spaces:
Sleeping
Sleeping
File size: 8,958 Bytes
7d1f745 329c034 970d1a0 966c0a8 eaf5124 966c0a8 970d1a0 966c0a8 970d1a0 966c0a8 eaf5124 966c0a8 eaf5124 966c0a8 eaf5124 966c0a8 970d1a0 966c0a8 eaf5124 966c0a8 eaf5124 966c0a8 eaf5124 966c0a8 970d1a0 966c0a8 970d1a0 966c0a8 dbc9309 970d1a0 eaf5124 329c034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
# Define People Tracking
class PeopleTracking:
def __init__(self, yolo_model_path="yolov8n.pt"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = YOLO(yolo_model_path).to(self.device)
def track_people(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_tracking.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
ids = result.boxes.id.cpu().numpy() if hasattr(result.boxes, "id") else np.arange(len(boxes))
for box, cls, obj_id in zip(boxes, classes, ids):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Define Fall Detection
class FallDetection:
def __init__(self, yolo_model_path="yolov8l.pt"):
self.model = YOLO(yolo_model_path)
def detect_fall(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_fall.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model(frame)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
width = x2 - x1
height = y2 - y1
aspect_ratio = width / height
if aspect_ratio > 0.55:
color = (0, 0, 255)
label = "FALL DETECTED"
else:
color = (0, 255, 0)
label = "Standing"
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Define Fight Detection
class FightDetection:
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
self.model = YOLO(yolo_model_path).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def detect_fight(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_fight.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
for kp, cls in zip(keypoints, classes):
if int(cls) == 0:
x1, y1 = int(kp[0][0]), int(kp[0][1])
x2, y2 = int(kp[-1][0]), int(kp[-1][1])
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(frame, "FIGHT DETECTED", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Function to process video based on selected feature
def process_video(feature, video):
detectors = {
"People Tracking": PeopleTracking,
"Fall Detection": FallDetection,
"Fight Detection": FightDetection
}
detector = detectors[feature]()
method_name = f"detect_{feature.lower().replace(' ', '_')}"
return getattr(detector, method_name)(video)
# Gradio Interface
interface = gr.Interface(
fn=process_video,
inputs=[
gr.Dropdown(choices=["People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
gr.Video(label="Upload Video")
],
outputs=gr.Video(label="Processed Video"),
title="YOLOv8 Multitask Video Processing"
)
if __name__ == "__main__":
interface.launch()
"""""
import gradio as gr
import cv2
import numpy as np
import os
import torch
from ultralytics import YOLO
import spaces # Import ZeroGPU for Hugging Face Spaces
@spaces.GPU # Ensures GPU is allocated during execution
def process_video(video_path):
"""Process video using YOLOv8 for crowd detection."""
# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🔍 Using device: {device}")
# Load YOLOv8 model on GPU
model = YOLO("yolov8n.pt").to(device)
# Read input video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"❌ Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"🎥 Video details - FPS: {fps}, Width: {width}, Height: {height}")
# Define output video path
output_path = "output_crowd.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
CROWD_THRESHOLD = 10 # Define crowd limit for alerts
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
# Run YOLO inference on the frame
results = model(frame)
# Count detected persons
person_count = 0
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0: # YOLO class ID 0 = "person"
person_count += 1
x1, y1, x2, y2 = map(int, box)
# Draw bounding box for persons
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, "Person", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Display count on frame
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
out.write(frame) # Save frame to output video
cap.release()
out.release()
if frame_count == 0:
raise ValueError("❌ No frames were processed!")
if not os.path.exists(output_path):
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
print(f"✅ Processed video saved at: {output_path}")
return output_path
# Gradio Interface
interface = gr.Interface(
fn=process_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Video(label="Processed Video"),
title="Crowd Detection with YOLOv8",
description="Upload a video, and YOLOv8 will detect and count people. If the crowd exceeds 10 people, a warning will be displayed."
)
if __name__ == "__main__":
interface.launch()
"""" |