File size: 9,904 Bytes
7d1f745
329c034
 
 
 
 
82ed089
93fb51e
 
329c034
cdec70d
7a2e724
 
cdec70d
7ef0fcc
 
 
 
 
 
 
 
 
 
cdec70d
7a2e724
cdec70d
 
 
 
 
 
 
 
 
 
 
 
7ef0fcc
 
 
 
7a2e724
cdec70d
 
 
 
 
7a2e724
cdec70d
 
7a2e724
 
cdec70d
 
7a2e724
 
 
 
 
 
 
cdec70d
 
 
 
 
7a2e724
cdec70d
 
 
 
 
7a2e724
 
cdec70d
7a2e724
 
cdec70d
 
 
 
 
 
 
 
 
 
 
7ef0fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2e724
7ef0fcc
7a2e724
cdec70d
329c034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdec70d
329c034
 
 
 
 
 
 
 
 
 
 
 
 
cdec70d
329c034
 
 
 
 
 
 
4fbc361
329c034
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
import spaces

@spaces.GPU

class CrowdDetection:
    def __init__(self, model_path="yolov8n.pt"):
        """Initialize the YOLO model once to avoid PicklingError."""
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if not os.path.exists(model_path):
            # Download the model if not present
            from ultralytics import YOLO
            self.model = YOLO("yolov8n.pt")  # This downloads the model automatically
            self.model.save(model_path)  # Save locally
        else:
            self.model = YOLO(model_path)
        self.model.to(self.device)

    @spaces.GPU
    def detect_crowd(self, video_path):
        """Process video using YOLOv8 for crowd detection."""
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            raise ValueError(f"❌ Failed to open video: {video_path}")

        fps = int(cap.get(cv2.CAP_PROP_FPS))
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        output_path = "output_crowd.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

        if not out.isOpened():
            cap.release()
            raise ValueError(f"❌ Failed to initialize video writer for {output_path}")

        CROWD_THRESHOLD = 10
        frame_count = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break  # End of video
            
            frame_count += 1

            # Run YOLO inference on the frame
            results = self.model(frame)

            # Count detected persons
            person_count = sum(
                1 for result in results
                for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0
            )

            # Draw bounding boxes
            for result in results:
                boxes = result.boxes.xyxy.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()

                for box, cls in zip(boxes, classes):
                    if int(cls) == 0:  # Person class
                        x1, y1, x2, y2 = map(int, box)
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                        cv2.putText(frame, "Person", (x1, y1 - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            # Display count on frame
            alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
            cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
                        (0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)

            out.write(frame)

        cap.release()
        out.release()

        if frame_count == 0:
            raise ValueError("❌ No frames were processed!")

        if not os.path.exists(output_path):
            raise FileNotFoundError(f"❌ Output video not found: {output_path}")

        return output_path

# Define Gradio interface function
def process_video(video):
    try:
        detector = CrowdDetection()  # Instantiate inside to avoid pickling
        output_path = detector.detect_crowd(video)
        return "Crowd detection complete!", output_path
    except Exception as e:
        return f"Error: {str(e)}", None

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Crowd Detection with YOLOv8")
    gr.Markdown("Upload a video to detect people and get crowd alerts (threshold: 10 people)")
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Upload Video")
            submit_btn = gr.Button("Detect Crowd")
        with gr.Column():
            status_output = gr.Textbox(label="Status")
            video_output = gr.Video(label="Result")
    
    submit_btn.click(
        fn=process_video,
        inputs=[video_input],
        outputs=[status_output, video_output]
    )

demo.launch(debug=True)


class PeopleTracking:
    def __init__(self, yolo_model_path="yolov8n.pt"):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = YOLO(yolo_model_path).to(self.device)
    
    def track_people(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_tracking.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model.track(frame, persist=True)
            for result in results:
                boxes = result.boxes.xyxy.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()
                ids = result.boxes.id.cpu().numpy() if hasattr(result.boxes, "id") else np.arange(len(boxes))
                
                for box, cls, obj_id in zip(boxes, classes, ids):
                    if int(cls) == 0:
                        x1, y1, x2, y2 = map(int, box)
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
                        cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Define Fall Detection
class FallDetection:
    def __init__(self, yolo_model_path="yolov8l.pt"):
        self.model = YOLO(yolo_model_path)
    
    def detect_fall(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_fall.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model(frame)
            for result in results:
                boxes = result.boxes.xyxy.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()
                
                for box, cls in zip(boxes, classes):
                    if int(cls) == 0:
                        x1, y1, x2, y2 = map(int, box)
                        width = x2 - x1
                        height = y2 - y1
                        aspect_ratio = width / height
                        
                        if aspect_ratio > 0.55:
                            color = (0, 0, 255)
                            label = "FALL DETECTED"
                        else:
                            color = (0, 255, 0)
                            label = "Standing"
                        
                        cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
                        cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Define Fight Detection
class FightDetection:
    def __init__(self, yolo_model_path="yolov8n-pose.pt"):
        self.model = YOLO(yolo_model_path).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
    
    def detect_fight(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_fight.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model.track(frame, persist=True)
            for result in results:
                keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
                classes = result.boxes.cls.cpu().numpy() if result.boxes else []
                
                for kp, cls in zip(keypoints, classes):
                    if int(cls) == 0:
                        x1, y1 = int(kp[0][0]), int(kp[0][1])
                        x2, y2 = int(kp[-1][0]), int(kp[-1][1])
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
                        cv2.putText(frame, "FIGHT DETECTED", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Function to process video based on selected feature
def process_video(feature, video):
    detectors = {
        "Crowd Detection": CrowdDetection,
        "People Tracking": PeopleTracking,
        "Fall Detection": FallDetection,
        "Fight Detection": FightDetection
    }
    
    detector = detectors[feature]()
    method_name = f"detect_{feature.lower().replace(' ', '_')}"
    return getattr(detector, method_name)(video)

# Gradio Interface
interface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Dropdown(choices=["Crowd Detection", "People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
        gr.Video(label="Upload Video")
    ],
    outputs=gr.Video(label="Processed Video"),
    title="YOLOv8 Multitask Video Processing"
)

if __name__ == "__main__":
    interface.launch(debug=True)