Spaces:
Build error
Build error
import os | |
import subprocess | |
from dotenv import load_dotenv | |
load_dotenv() | |
try: | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") | |
except: | |
PINECONE_API_KEY = subprocess.check_output(["bash", "-c", "echo ${{ secrets.PINECONE_API_KEY }}"]).decode("utf-8").strip() | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import pinecone | |
import torch | |
from langchain import PromptTemplate, LLMChain,HuggingFacePipeline | |
from langchain.vectorstores import Pinecone | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.chains import RetrievalQA | |
from transformers import pipeline | |
def get_llm(model_name,pinecone_index,llm): | |
# model_name = "bert-large-uncased" #"t5-large" | |
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
pinecone.init( | |
api_key=PINECONE_API_KEY, | |
environment="us-east-1-aws" | |
) | |
index = pinecone.Index(pinecone_index) | |
print(index.describe_index_stats()) | |
docsearch = Pinecone(index, embeddings.embed_query,"text") | |
# print("About to load the model") | |
instruct_pipeline = pipeline(model=llm, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", | |
return_full_text=True, do_sample=False, max_new_tokens=128) | |
llm = HuggingFacePipeline(pipeline=instruct_pipeline) | |
# print("Loaded the LLM") | |
# print("Prompting") | |
template = """Context: {context} | |
Question: {question} | |
Answer: Let's go step by step.""" | |
prompt = PromptTemplate(template=template, input_variables=["question","context"]) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
return llm_chain, docsearch | |
if __name__ == "__main__": | |
model_name = "bert-large-uncased" | |
pinecone_index = "bert-large-uncased" | |
llm = "databricks/dolly-v2-3b" | |
llm_chain, docsearch = get_llm(model_name,pinecone_index,llm) | |
print(":"*40) | |
questions = ["what is the name of the first Hindi newspaper published in Bihar?", | |
"what is the capital of Bihar?", | |
"Brief about the Gupta Dynasty"] | |
for question in questions: | |
context = docsearch.similarity_search(question, k=3,metadata=False) | |
content = "" | |
for i in context: | |
content= content + f"{i.__dict__['page_content']}" | |
print(f"{question}") | |
response = llm_chain.predict(question=question,context=content) | |
print(f"{response}\n{'--'*25}") | |