Spaces:
doevent
/
Running on Zero

File size: 11,049 Bytes
a00800e
 
1b8b226
20ac05d
a00800e
 
b51eadf
 
 
a00800e
0d4c368
1b8b226
1fef40b
1b8b226
bfc1040
1b8b226
a00800e
1b8b226
 
 
 
 
 
a00800e
1b8b226
 
b51eadf
 
1b8b226
 
b51eadf
 
 
1b8b226
a00800e
 
 
 
 
 
 
 
 
b51eadf
 
 
 
 
a00800e
 
 
b51eadf
a00800e
 
 
 
 
 
 
 
b51eadf
a00800e
 
1b8b226
b51eadf
a00800e
b51eadf
 
 
 
6ee52df
38e388c
b51eadf
 
 
38e388c
 
 
2cd7eda
b51eadf
 
 
38e388c
 
 
a00800e
38e388c
20ac05d
a00800e
 
 
 
 
 
 
 
b51eadf
6fe04b4
 
a00800e
1b8b226
a00800e
ad47941
1b8b226
 
 
a00800e
 
1b8b226
94bce76
 
d18dfca
b51eadf
 
 
94bce76
1b8b226
2cd7eda
b51eadf
1b8b226
 
b51eadf
 
 
 
 
 
 
 
 
 
 
a00800e
1b8b226
 
a00800e
1b8b226
a00800e
 
1b8b226
 
15563ba
1b8b226
 
 
 
 
6fe04b4
1b8b226
b51eadf
81ba96a
b51eadf
 
 
 
d13513d
b51eadf
 
1fef40b
2cd7eda
bfc1040
 
595f913
a00800e
8ea5b1f
3b1fe09
b51eadf
1b8b226
8ea5b1f
 
 
 
b51eadf
 
8ea5b1f
 
b51eadf
 
8ea5b1f
a00800e
b51eadf
 
 
797cd30
a00800e
797cd30
 
8ea5b1f
 
a00800e
 
 
d18dfca
20ac05d
bfc1040
b1e0e58
bfc1040
839dcf3
 
 
 
 
bfc1040
 
 
 
 
b1e0e58
bfc1040
20ac05d
82e4949
1de925c
82e4949
4942d84
3b1fe09
1de925c
 
a00800e
5320385
 
ad47941
4ca94b8
839dcf3
ad47941
4ca94b8
ad47941
301c3a1
ad47941
 
 
 
 
 
 
 
 
4ca94b8
ad47941
301c3a1
2cd7eda
4ca94b8
ad47941
301c3a1
ad47941
 
bfc1040
b1e0e58
 
 
 
 
1de925c
b1e0e58
 
 
 
 
 
 
 
81ba96a
1de925c
81ba96a
 
 
 
 
 
d13513d
b1e0e58
 
 
 
 
 
 
 
 
 
 
d13513d
 
 
 
 
 
b1e0e58
 
 
bfc1040
cee2118
1fef40b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Some of the implementations below are adopted from
# https://huggingface.co/spaces/sczhou/CodeFormer and https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus
import os

import matplotlib.pyplot as plt

if os.getenv("SPACES_ZERO_GPU") == "true":
    os.environ["SPACES_ZERO_GPU"] = "1"
os.environ["K_DIFFUSION_USE_COMPILE"] = "0"

import spaces
import cv2
from tqdm import tqdm
import gradio as gr
import random
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer

from lightning_models.mmse_rectified_flow import MMSERectifiedFlow

MAX_SEED = 10000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

os.makedirs("pretrained_models", exist_ok=True)
realesr_model_path = "pretrained_models/RealESRGAN_x4plus.pth"
if not os.path.exists(realesr_model_path):
    os.system(
        "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth"
    )


# # background enhancer with RealESRGAN
# model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
# half = True if torch.cuda.is_available() else False
# upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0,
#                          half=half)


def set_realesrgan():
    use_half = False
    if torch.cuda.is_available():  # set False in CPU/MPS mode
        no_half_gpu_list = ["1650", "1660"]  # set False for GPUs that don't support f16
        if not True in [
            gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list
        ]:
            use_half = True

    model = RRDBNet(
        num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2,
    )
    upsampler = RealESRGANer(
        scale=2,
        model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
        model=model,
        tile=400,
        tile_pad=40,
        pre_pad=0,
        half=use_half,
    )
    return upsampler


upsampler = set_realesrgan()
pmrf = MMSERectifiedFlow.from_pretrained(
    "ohayonguy/PMRF_blind_face_image_restoration"
).to(device=device)


def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
    source_dist_samples = pmrf_model.create_source_distribution_samples(
        x, y, non_noisy_z0
    )
    dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
    x_t_next = source_dist_samples.clone()
    t_one = torch.ones(x.shape[0], device=device)
    for i in tqdm(range(num_flow_steps)):
        num_t = (i / num_flow_steps) * (
            1.0 - pmrf_model.hparams.eps
        ) + pmrf_model.hparams.eps
        v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
        x_t_next = x_t_next.clone() + v_t_next * dt

    return x_t_next.clip(0, 1)


def resize(img, size):
    # From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py
    h, w = img.shape[0:2]
    scale = size / min(h, w)
    h, w = int(h * scale), int(w * scale)
    interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
    return cv2.resize(img, (w, h), interpolation=interp)


@torch.inference_mode()
@spaces.GPU()
def enhance_face(img, face_helper, has_aligned, num_flow_steps, scale=2):
    face_helper.clean_all()
    if has_aligned:  # The inputs are already aligned
        img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
        face_helper.cropped_faces = [img]
    else:
        face_helper.read_image(img)
        face_helper.input_img = resize(face_helper.input_img, 640)
        face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5)
        face_helper.align_warp_face()
    if len(face_helper.cropped_faces) == 0:
        raise gr.Error("Could not identify any face in the image.")
    if has_aligned and len(face_helper.cropped_faces) > 1:
        raise gr.Error(
            "You marked that the input image is aligned, but multiple faces were detected."
        )

    # face restoration
    for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)):
        cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
        cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

        output = generate_reconstructions(
            pmrf,
            torch.zeros_like(cropped_face_t),
            cropped_face_t,
            None,
            num_flow_steps,
            device,
        )
        restored_face = tensor2img(
            output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)
        )
        restored_face = restored_face.astype("uint8")
        face_helper.add_restored_face(restored_face)

    if not has_aligned:
        # upsample the background
        # Now only support RealESRGAN for upsampling background
        bg_img = upsampler.enhance(img, outscale=scale)[0]
        face_helper.get_inverse_affine(None)
        # paste each restored face to the input image
        restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
        return face_helper.cropped_faces, face_helper.restored_faces, restored_img
    else:
        return face_helper.cropped_faces, face_helper.restored_faces, None


@torch.inference_mode()
@spaces.GPU()
def inference(
    img,
    randomize_seed,
    aligned,
    scale,
    num_flow_steps,
    seed,
    progress=gr.Progress(track_tqdm=True),
):
    if img is None:
        raise gr.Error("Please upload an image before submitting.")
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    torch.manual_seed(seed)
    img = cv2.imread(img, cv2.IMREAD_COLOR)
    h, w = img.shape[0:2]
    if h > 4500 or w > 4500:
        raise gr.Error("Image size too large.")

    face_helper = FaceRestoreHelper(
        scale,
        face_size=512,
        crop_ratio=(1, 1),
        det_model="retinaface_resnet50",
        save_ext="png",
        use_parse=True,
        device=device,
        model_rootpath=None,
    )

    has_aligned = aligned
    cropped_face, restored_faces, restored_img = enhance_face(
        img, face_helper, has_aligned, num_flow_steps=num_flow_steps, scale=scale
    )
    if has_aligned:
        output = restored_faces[0]
    else:
        output = restored_img

    output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
    for i, restored_face in enumerate(restored_faces):
        restored_faces[i] = cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB)
    torch.cuda.empty_cache()
    return output, restored_faces if len(restored_faces) > 1 else None


title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
intro = """
<h3 style="margin-bottom: 10px; text-align: center;">
    <a href="https://ohayonguy.github.io/">Guy Ohayon</a>&nbsp;,&nbsp;
    <a href="https://tomer.net.technion.ac.il/">Tomer Michaeli</a>&nbsp;,&nbsp;
    <a href="https://elad.cs.technion.ac.il/">Michael Elad</a>
</h3>
<h3 style="margin-bottom: 10px; text-align: center;">
    <a href="https://arxiv.org/abs/2410.00418">[Paper]</a>&nbsp;|&nbsp;
    <a href="https://pmrf-ml.github.io/">[Project Page]</a>&nbsp;|&nbsp;
    <a href="https://github.com/ohayonguy/PMRF">[Code]</a>
</h3>

Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). 
You may use this demo to enhance the quality of any image which contains faces.

PMRF is a novel photo-realistic image restoration algorithm. It (provably) approximates the optimal estimator that minimizes the Mean Squared Error (MSE) under a perfect perceptual quality constraint. Our model in this demo is specifically tailored for blind face image restoration. Please refer to our project's page for more details: https://pmrf-ml.github.io/.

*Notes* : 

1. Our original model is designed to restore low-quality face images, where the image is square, there is *only one* face in the image, and the face is centered and aligned. In this demo, however, we incorporate mechanisms that allow restoring the quality of *any* image that contains *any* number of faces. Thus, the resulting quality of such general images is not guaranteed.
2. If your image is not an aligned and square face image, make sure that the checkbox "The input is an aligned and square face image" in *not* marked.
3. Too large images may result in out-of-memory error.
"""

article = r"""

If you find our work useful, please ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)

📝 **Citation**

```bibtex
@article{ohayon2024pmrf,
  author    = {Guy Ohayon and Tomer Michaeli and Michael Elad},
  title     = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
  journal   = {arXiv preprint arXiv:2410.00418},
  year      = {2024},
  url       = {https://arxiv.org/abs/2410.00418}
}
```

📋 **License**

This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>.

📧 **Contact**

If you have any questions, please feel free to contact me at <b>[email protected]</b>.
"""

demo = gr.Interface(
    inference,
    [
        gr.Image(label="Input", type="filepath", show_label=True),
        gr.Checkbox(label="Randomize seed", value=True),
        gr.Checkbox(label="The input is an aligned and square face image", value=False),
        gr.Slider(
            label="Scale factor (applicable to non-aligned face images)",
            minimum=1,
            maximum=4,
            step=0.1,
            value=1,
            scale=1,
        ),
        gr.Slider(
            label="Number of inference steps (a larger number should lead to better image quality)",
            minimum=1,
            maximum=200,
            step=1,
            value=25,
            scale=1,
        ),
        gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, scale=1),
    ],
    [
        gr.Image(label="Output", type="numpy", show_label=True, format="png"),
        gr.Gallery(
            label="Restored faces gallery", type="numpy", show_label=True, format="png",
        ),
    ],
    title=title,
    description=intro,
    article=article,
    examples=[
        ["examples/01.png", False, False, 1, 25, 42],
        ["examples/03.jpg", False, False, 2, 25, 42],
        ["examples/00000055.png", False, True, 1, 25, 42],
        ["examples/00000085.png", False, True, 1, 25, 42],
        ["examples/00000113.png", False, True, 1, 25, 42],
        ["examples/00000137.png", False, True, 1, 25, 42],
    ],
    theme=gr.themes.Soft(),
)

demo.queue()
demo.launch(state_session_capacity=15)