Spaces:
Runtime error
Runtime error
File size: 4,299 Bytes
849fdd5 23624f5 849fdd5 23624f5 849fdd5 b1d9540 849fdd5 8666754 849fdd5 23624f5 b1d9540 ca3be5f adc12fa 8666754 b790aae ee59722 b790aae 8666754 23624f5 ca3be5f 7b94d99 ca3be5f 8666754 849fdd5 23624f5 849fdd5 23624f5 8666754 7b94d99 849fdd5 ca3be5f 8666754 ca3be5f 8666754 e659be2 ee59722 e659be2 ee59722 e659be2 397c64d ee59722 e659be2 397c64d e659be2 ee59722 e659be2 397c64d ee59722 e659be2 ee59722 e659be2 ca3be5f e659be2 849fdd5 23624f5 8666754 ee59722 8666754 23624f5 ee59722 23624f5 83787dd 849fdd5 8666754 fa5479f ca3be5f fa5479f 83787dd ca3be5f 83787dd 23624f5 ee59722 8666754 849fdd5 83787dd 849fdd5 83787dd 849fdd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# Import necessary libraries
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from openai import OpenAI
import os
import torch
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
from huggingface_hub import login
# Initialize the OpenAI client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
)
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if api_token:
login(token=api_token)
else:
st.error("API token is not set in the environment variables.")
# Define model links
model_links = {
"HAH-2024-v0.1": "drmasad/HAH-2024-v0.11"
}
# Set selected model
selected_model = "HAH-2024-v0.1"
# Display welcome message
st.title("Welcome to HAH-2024-v0.1")
# Sidebar setup
temp_values = st.sidebar.slider("Select a temperature value", 0.0, 1.0, (0.5))
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
st.sidebar.button("Reset Chat", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("*This is an under development project.*")
# Function to load model
def load_model(selected_model_name):
st.info("Loading the model, please wait...")
model_name = model_links[selected_model_name]
# Set a specific device
device = "cuda" if torch.cuda.is_available() else "cpu"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
llm_int8_enable_fp32_cpu_offload=True,
)
device_map = {
'encoder.layer.0': 'cuda', # Keep specific parts on GPU
'decoder': 'cpu', # Offload others to CPU
}
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map,
trust_remote_code=True,
)
model.config.use_cache = False
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
)
model = get_peft_model(model, peft_config)
tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2", trust_remote_code=True
)
st.success("Model is ready. Now we are ready!")
return model, tokenizer
# Load model and tokenizer
model, tokenizer = load_model(selected_model)
# Chat application logic
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me anything about diabetes"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
instructions = """
Act as a highly knowledgeable endocrinology doctor with expertise in explaining complex medical information in an understandable way to patients who do not have a medical background. Your responses should not only convey empathy and care but also demonstrate a high level of medical accuracy and reliability.
you will answer only what the need and in professional way. do not add extra unnecessary information. you can however chat with the patient casually
"""
full_prompt = f"<s>[INST] {instructions} [/INST] {prompt}</s>"
with st.chat_message("assistant"):
result = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
max_length=1024,
temperature=temp_values
)(full_prompt)
generated_text = result[0]['generated_text']
response = generated_text.split("</s>")[-1].strip()
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
|