File size: 4,299 Bytes
849fdd5
23624f5
849fdd5
23624f5
 
849fdd5
 
b1d9540
849fdd5
8666754
849fdd5
 
 
 
23624f5
b1d9540
 
 
 
ca3be5f
adc12fa
8666754
b790aae
ee59722
b790aae
 
8666754
 
23624f5
ca3be5f
7b94d99
ca3be5f
8666754
849fdd5
 
 
 
23624f5
849fdd5
23624f5
8666754
7b94d99
 
849fdd5
ca3be5f
8666754
ca3be5f
8666754
e659be2
 
 
 
ee59722
 
 
 
 
e659be2
ee59722
e659be2
397c64d
 
 
 
 
ee59722
e659be2
 
397c64d
e659be2
ee59722
e659be2
397c64d
ee59722
 
e659be2
 
 
 
 
 
 
 
 
 
ee59722
e659be2
 
 
 
ca3be5f
e659be2
849fdd5
23624f5
8666754
 
ee59722
8666754
23624f5
 
 
 
 
 
 
ee59722
23624f5
 
83787dd
849fdd5
8666754
fa5479f
 
ca3be5f
fa5479f
83787dd
ca3be5f
83787dd
23624f5
ee59722
8666754
 
 
 
849fdd5
83787dd
 
 
 
 
849fdd5
83787dd
849fdd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Import necessary libraries
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from openai import OpenAI
import os
import torch
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
from huggingface_hub import login

# Initialize the OpenAI client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
)

api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if api_token:
    login(token=api_token)
else:
    st.error("API token is not set in the environment variables.")

# Define model links
model_links = {
    "HAH-2024-v0.1": "drmasad/HAH-2024-v0.11"
}

# Set selected model
selected_model = "HAH-2024-v0.1"

# Display welcome message
st.title("Welcome to HAH-2024-v0.1")

# Sidebar setup
temp_values = st.sidebar.slider("Select a temperature value", 0.0, 1.0, (0.5))
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

st.sidebar.button("Reset Chat", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("*This is an under development project.*")

# Function to load model
def load_model(selected_model_name):
    st.info("Loading the model, please wait...")
    model_name = model_links[selected_model_name]

    # Set a specific device
    device = "cuda" if torch.cuda.is_available() else "cpu"

    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=False,
        llm_int8_enable_fp32_cpu_offload=True,
    )

    device_map = {
        'encoder.layer.0': 'cuda',  # Keep specific parts on GPU
        'decoder': 'cpu',           # Offload others to CPU
    }
    
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        quantization_config=bnb_config,
        device_map=device_map,
        trust_remote_code=True,
    )


    model.config.use_cache = False
    model = prepare_model_for_kbit_training(model)

    peft_config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.1,
        r=64,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"],
    )

    model = get_peft_model(model, peft_config)

    tokenizer = AutoTokenizer.from_pretrained(
        "mistralai/Mistral-7B-Instruct-v0.2", trust_remote_code=True
    )
    st.success("Model is ready. Now we are ready!")

    return model, tokenizer

# Load model and tokenizer
model, tokenizer = load_model(selected_model)

# Chat application logic
if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Ask me anything about diabetes"):
    with st.chat_message("user"):
        st.markdown(prompt)

    st.session_state.messages.append({"role": "user", "content": prompt})

    instructions = """
    Act as a highly knowledgeable endocrinology doctor with expertise in explaining complex medical information in an understandable way to patients who do not have a medical background. Your responses should not only convey empathy and care but also demonstrate a high level of medical accuracy and reliability.
you will answer only what the need and in professional way. do not add extra unnecessary information. you can however chat with the patient casually
    """

    full_prompt = f"<s>[INST] {instructions} [/INST] {prompt}</s>"

    with st.chat_message("assistant"):
        result = pipeline(
            task="text-generation",
            model=model,
            tokenizer=tokenizer,
            max_length=1024,
            temperature=temp_values
        )(full_prompt)

        generated_text = result[0]['generated_text']
        response = generated_text.split("</s>")[-1].strip()

        st.markdown(response)

    st.session_state.messages.append({"role": "assistant", "content": response})