File size: 7,121 Bytes
98889c8
 
1eb87a5
a7111d1
98889c8
1665fe1
3920f5c
a7111d1
46bb495
 
3920f5c
1eb87a5
a7111d1
 
 
46bb495
 
 
 
 
 
 
 
 
 
 
a7111d1
 
 
1eb87a5
3920f5c
 
 
1eb87a5
 
a7111d1
3920f5c
46bb495
 
 
 
 
 
 
 
 
 
 
 
 
3920f5c
 
46bb495
a02c6d7
3920f5c
a7111d1
46bb495
 
 
 
 
 
 
 
 
 
 
1eb87a5
a7111d1
46bb495
 
 
 
 
 
 
 
1eb87a5
 
a7111d1
46bb495
3920f5c
46bb495
 
3920f5c
46bb495
a7111d1
46bb495
 
a7111d1
46bb495
3920f5c
46bb495
3920f5c
46bb495
3920f5c
a7111d1
3920f5c
46bb495
3920f5c
46bb495
3920f5c
a7111d1
0652978
3920f5c
46bb495
0652978
46bb495
3920f5c
46bb495
3920f5c
 
46bb495
a7111d1
46bb495
 
 
3920f5c
 
 
 
 
 
 
46bb495
3920f5c
 
46bb495
 
3920f5c
46bb495
3920f5c
 
 
 
 
 
 
 
 
 
46bb495
 
 
 
a7111d1
46bb495
a7111d1
46bb495
a7111d1
3920f5c
 
46bb495
3920f5c
 
 
a7111d1
3920f5c
 
1665fe1
 
 
1eb87a5
a7111d1
 
 
 
1eb87a5
 
1665fe1
 
a7111d1
 
1eb87a5
 
 
 
 
 
1665fe1
98889c8
 
46bb495
eb02bc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import torch
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
import pickle
import warnings
import logging
from datetime import datetime
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera

# Configuração de logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("processing.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Configurações e supressão de avisos
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

# Configurar dispositivos
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"


# 1. Carregar modelos do Thera ----------------------------------------------------------------
def load_thera_model(repo_id, filename):
    try:
        logger.info(f"Iniciando carregamento do modelo Thera de {repo_id}")
        model_path = hf_hub_download(repo_id=repo_id, filename=filename)
        with open(model_path, 'rb') as fh:
            check = pickle.load(fh)
            variables = check['model']
            backbone, size = check['backbone'], check['size']
        model = build_thera(3, backbone, size)
        logger.info("Modelo Thera carregado com sucesso")
        return model, variables
    except Exception as e:
        logger.error(f"Falha ao carregar modelo Thera: {str(e)}")
        raise


logger.info("Carregando Thera EDSR...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")

# 2. Carregar SDXL + LoRA ---------------------------------------------------------------------
try:
    logger.info("Iniciando carregamento do SDXL + LoRA...")
    pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float32
    ).to(TORCH_DEVICE)
    pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
    logger.info("SDXL + LoRA carregado com sucesso")
except Exception as e:
    logger.error(f"Falha ao carregar SDXL: {str(e)}")
    raise

# 3. Carregar modelo de profundidade ----------------------------------------------------------
try:
    logger.info("Iniciando carregamento do DPT Depth...")
    feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
    depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
    logger.info("Modelo DPT carregado com sucesso")
except Exception as e:
    logger.error(f"Falha ao carregar DPT: {str(e)}")
    raise


# Pipeline principal --------------------------------------------------------------------------
def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
    try:
        progress(0, desc="Iniciando processamento...")

        # 1. Super Resolução com Thera
        progress(0.1, desc="Convertendo imagem para RGB...")
        image = image.convert("RGB")

        progress(0.2, desc="Preparando entrada para super-resolução...")
        source = np.array(image) / 255.0
        original_size = image.size
        target_shape = (int(image.height * scale_factor), int(image.width * scale_factor))
        logger.info(f"Super-resolução: {original_size}{target_shape} (scale: {scale_factor}x)")

        progress(0.3, desc="Processando com Thera...")
        source_jax = jax.device_put(source, JAX_DEVICE)
        t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)

        start_time = datetime.now()
        upscaled = model_edsr.apply(
            variables_edsr,
            source_jax,
            t,
            target_shape
        )
        logger.info(f"Super-resolução concluída em {datetime.now() - start_time}")

        progress(0.5, desc="Convertendo resultado...")
        upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8))
        logger.info(f"Tamanho após super-resolução: {upscaled_pil.size}")

        # 2. Gerar Bas-Relief
        progress(0.6, desc="Gerando Bas-Relief...")
        full_prompt = f"BAS-RELIEF {prompt}, insanely detailed and complex engraving relief, ultra-high definition, rich in detail, 16K resolution"
        logger.info(f"Prompt final: {full_prompt}")

        start_time = datetime.now()
        bas_relief = pipe(
            prompt=full_prompt,
            image=upscaled_pil,
            strength=0.7,
            num_inference_steps=25,
            guidance_scale=7.5
        ).images[0]
        logger.info(f"Bas-Relief gerado em {datetime.now() - start_time}")

        # 3. Calcular Depth Map
        progress(0.8, desc="Calculando mapa de profundidade...")
        start_time = datetime.now()
        inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)

        with torch.no_grad():
            outputs = depth_model(**inputs)
            depth = outputs.predicted_depth

        depth_map = torch.nn.functional.interpolate(
            depth.unsqueeze(1),
            size=bas_relief.size[::-1],
            mode="bicubic"
        ).squeeze().cpu().numpy()

        progress(0.9, desc="Processando mapa de profundidade...")
        depth_min = depth_map.min()
        depth_max = depth_map.max()
        depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-8)
        depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))
        logger.info(f"Profundidade calculada em {datetime.now() - start_time} | Range: {depth_min:.2f}-{depth_max:.2f}")

        progress(1.0, desc="Finalizado!")
        return upscaled_pil, bas_relief, depth_pil

    except Exception as e:
        logger.error(f"Erro no processamento: {str(e)}", exc_info=True)
        raise gr.Error(f"Erro no processamento: {str(e)}")


# Interface Gradio ----------------------------------------------------------------------------
with gr.Blocks(title="Super Res + Bas-Relief") as app:
    gr.Markdown("## 🔍 Super Resolução + 🗿 Bas-Relief + 🗺️ Profundidade")

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(type="pil", label="Imagem de Entrada")
            prompt = gr.Textbox(
                label="Descrição do Relevo",
                value="insanely detailed and complex engraving relief, ultra-high definition, rich in detail, and 16K resolution."
            )
            scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
            btn = gr.Button("Processar")

        with gr.Column():
            img_upscaled = gr.Image(label="Imagem Super Resolvida")
            img_basrelief = gr.Image(label="Resultado Bas-Relief")
            img_depth = gr.Image(label="Mapa de Profundidade")

    btn.click(
        full_pipeline,
        inputs=[img_input, prompt, scale],
        outputs=[img_upscaled, img_basrelief, img_depth]
    )

if __name__ == "__main__":
    logger.info("Iniciando aplicação Gradio")
    app.launch(share=False)