File size: 7,121 Bytes
98889c8 1eb87a5 a7111d1 98889c8 1665fe1 3920f5c a7111d1 46bb495 3920f5c 1eb87a5 a7111d1 46bb495 a7111d1 1eb87a5 3920f5c 1eb87a5 a7111d1 3920f5c 46bb495 3920f5c 46bb495 a02c6d7 3920f5c a7111d1 46bb495 1eb87a5 a7111d1 46bb495 1eb87a5 a7111d1 46bb495 3920f5c 46bb495 3920f5c 46bb495 a7111d1 46bb495 a7111d1 46bb495 3920f5c 46bb495 3920f5c 46bb495 3920f5c a7111d1 3920f5c 46bb495 3920f5c 46bb495 3920f5c a7111d1 0652978 3920f5c 46bb495 0652978 46bb495 3920f5c 46bb495 3920f5c 46bb495 a7111d1 46bb495 3920f5c 46bb495 3920f5c 46bb495 3920f5c 46bb495 3920f5c 46bb495 a7111d1 46bb495 a7111d1 46bb495 a7111d1 3920f5c 46bb495 3920f5c a7111d1 3920f5c 1665fe1 1eb87a5 a7111d1 1eb87a5 1665fe1 a7111d1 1eb87a5 1665fe1 98889c8 46bb495 eb02bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import torch
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
import pickle
import warnings
import logging
from datetime import datetime
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("processing.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Configurações e supressão de avisos
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Configurar dispositivos
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"
# 1. Carregar modelos do Thera ----------------------------------------------------------------
def load_thera_model(repo_id, filename):
try:
logger.info(f"Iniciando carregamento do modelo Thera de {repo_id}")
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(model_path, 'rb') as fh:
check = pickle.load(fh)
variables = check['model']
backbone, size = check['backbone'], check['size']
model = build_thera(3, backbone, size)
logger.info("Modelo Thera carregado com sucesso")
return model, variables
except Exception as e:
logger.error(f"Falha ao carregar modelo Thera: {str(e)}")
raise
logger.info("Carregando Thera EDSR...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
# 2. Carregar SDXL + LoRA ---------------------------------------------------------------------
try:
logger.info("Iniciando carregamento do SDXL + LoRA...")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float32
).to(TORCH_DEVICE)
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
logger.info("SDXL + LoRA carregado com sucesso")
except Exception as e:
logger.error(f"Falha ao carregar SDXL: {str(e)}")
raise
# 3. Carregar modelo de profundidade ----------------------------------------------------------
try:
logger.info("Iniciando carregamento do DPT Depth...")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
logger.info("Modelo DPT carregado com sucesso")
except Exception as e:
logger.error(f"Falha ao carregar DPT: {str(e)}")
raise
# Pipeline principal --------------------------------------------------------------------------
def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
try:
progress(0, desc="Iniciando processamento...")
# 1. Super Resolução com Thera
progress(0.1, desc="Convertendo imagem para RGB...")
image = image.convert("RGB")
progress(0.2, desc="Preparando entrada para super-resolução...")
source = np.array(image) / 255.0
original_size = image.size
target_shape = (int(image.height * scale_factor), int(image.width * scale_factor))
logger.info(f"Super-resolução: {original_size} → {target_shape} (scale: {scale_factor}x)")
progress(0.3, desc="Processando com Thera...")
source_jax = jax.device_put(source, JAX_DEVICE)
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
start_time = datetime.now()
upscaled = model_edsr.apply(
variables_edsr,
source_jax,
t,
target_shape
)
logger.info(f"Super-resolução concluída em {datetime.now() - start_time}")
progress(0.5, desc="Convertendo resultado...")
upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8))
logger.info(f"Tamanho após super-resolução: {upscaled_pil.size}")
# 2. Gerar Bas-Relief
progress(0.6, desc="Gerando Bas-Relief...")
full_prompt = f"BAS-RELIEF {prompt}, insanely detailed and complex engraving relief, ultra-high definition, rich in detail, 16K resolution"
logger.info(f"Prompt final: {full_prompt}")
start_time = datetime.now()
bas_relief = pipe(
prompt=full_prompt,
image=upscaled_pil,
strength=0.7,
num_inference_steps=25,
guidance_scale=7.5
).images[0]
logger.info(f"Bas-Relief gerado em {datetime.now() - start_time}")
# 3. Calcular Depth Map
progress(0.8, desc="Calculando mapa de profundidade...")
start_time = datetime.now()
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
with torch.no_grad():
outputs = depth_model(**inputs)
depth = outputs.predicted_depth
depth_map = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=bas_relief.size[::-1],
mode="bicubic"
).squeeze().cpu().numpy()
progress(0.9, desc="Processando mapa de profundidade...")
depth_min = depth_map.min()
depth_max = depth_map.max()
depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-8)
depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))
logger.info(f"Profundidade calculada em {datetime.now() - start_time} | Range: {depth_min:.2f}-{depth_max:.2f}")
progress(1.0, desc="Finalizado!")
return upscaled_pil, bas_relief, depth_pil
except Exception as e:
logger.error(f"Erro no processamento: {str(e)}", exc_info=True)
raise gr.Error(f"Erro no processamento: {str(e)}")
# Interface Gradio ----------------------------------------------------------------------------
with gr.Blocks(title="Super Res + Bas-Relief") as app:
gr.Markdown("## 🔍 Super Resolução + 🗿 Bas-Relief + 🗺️ Profundidade")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Imagem de Entrada")
prompt = gr.Textbox(
label="Descrição do Relevo",
value="insanely detailed and complex engraving relief, ultra-high definition, rich in detail, and 16K resolution."
)
scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
btn = gr.Button("Processar")
with gr.Column():
img_upscaled = gr.Image(label="Imagem Super Resolvida")
img_basrelief = gr.Image(label="Resultado Bas-Relief")
img_depth = gr.Image(label="Mapa de Profundidade")
btn.click(
full_pipeline,
inputs=[img_input, prompt, scale],
outputs=[img_upscaled, img_basrelief, img_depth]
)
if __name__ == "__main__":
logger.info("Iniciando aplicação Gradio")
app.launch(share=False) |