File size: 7,340 Bytes
357df1b 65579be 98889c8 19a6d73 98889c8 b82dc7d 19a6d73 b82dc7d 357df1b a7111d1 b82dc7d f41a4a7 b82dc7d 65579be 357df1b eb719b4 357df1b eb719b4 357df1b f41a4a7 5779b8d 0fa6c9c 5779b8d 65579be eb719b4 357df1b eb719b4 357df1b 5779b8d 357df1b 65579be 5779b8d 65579be 5779b8d 357df1b 65579be 888435a 5779b8d eb719b4 5779b8d 888435a a09dd26 888435a 5779b8d 888435a 160e39b 888435a eb719b4 888435a 5779b8d 357df1b 5779b8d 888435a 5779b8d 8094627 888435a 65579be 5779b8d 65579be 5779b8d 65579be 5779b8d 65579be eb719b4 5779b8d eb719b4 5779b8d eb719b4 5779b8d 65579be eb719b4 5779b8d 357df1b eb719b4 5779b8d eb719b4 357df1b eb719b4 5779b8d 357df1b eb719b4 5779b8d eb719b4 357df1b eb719b4 8094627 357df1b eb719b4 5779b8d 357df1b eb719b4 357df1b eb719b4 357df1b 5779b8d 357df1b 5779b8d eb719b4 357df1b eb719b4 8094627 357df1b eb719b4 357df1b eb719b4 8094627 357df1b 65579be eb719b4 5779b8d 357df1b 5779b8d 65579be eb719b4 65579be 357df1b eb719b4 5779b8d eb719b4 19a6d73 98889c8 65579be 357df1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# app.py
import logging
import gradio as gr
import torch
import numpy as np
import jax
import pickle
from PIL import Image
from huggingface_hub import hf_hub_download
from model import build_thera
from super_resolve import process
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
# ================== CONFIGURAÇÃO DE LOGGING ==================
class CustomLogger:
def __init__(self, name):
self.logger = logging.getLogger(name)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.logger.setLevel(logging.INFO)
def divider(self, text=None, length=60):
if text:
available_space = max(length - len(text) - 12, 1)
msg = f"{'=' * 10} {text.upper()} {'=' * available_space}"
else:
msg = "=" * length
self.logger.info(msg)
def etapa(self, text):
self.logger.info(f"▶ {text}")
def success(self, text):
self.logger.info(f"✓ {text}")
def error(self, text):
self.logger.error(f"✗ {text}")
logger = CustomLogger(__name__)
# ================== CONFIGURAÇÃO FORÇADA ==================
device = "cpu"
torch_dtype = torch.float32
logger.divider("Configuração Forçada")
logger.success(f"Dispositivo: {device.upper()}")
logger.success(f"Precisão: {str(torch_dtype).replace('torch.', '')}")
# ================== CARREGAMENTO DE MODELOS ==================
def carregar_modelo_thera(repo_id):
try:
logger.divider(f"Carregando {repo_id}")
model_path = hf_hub_download(repo_id=repo_id, filename="model.pkl")
with open(model_path, 'rb') as f:
check = pickle.load(f)
model = build_thera(3, check['backbone'], check['size'])
params = check['model']
logger.success(f"{repo_id} carregado")
return model, params
except Exception as e:
logger.error(f"Falha no carregamento: {str(e)}")
return None, None
try:
modelo_edsr, params_edsr = carregar_modelo_thera("prs-eth/thera-edsr-pro")
modelo_rdn, params_rdn = carregar_modelo_thera("prs-eth/thera-rdn-pro")
except Exception as e:
logger.error("Falha crítica nos modelos Thera")
raise
# ================== PIPELINE ARTÍSTICO ==================
pipe = None
modelo_profundidade = None
try:
logger.divider("Configurando Componentes Artísticos")
# Pipeline principal
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch_dtype,
variant="fp32"
).to(device)
# LoRA
pipe.load_lora_weights(
"KappaNeuro/bas-relief",
weight_name="BAS-RELIEF.safetensors",
peft_backend="peft" # This is crucial
)
# Modelo de profundidade
processador_profundidade = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
modelo_profundidade = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(device).float()
logger.success("Componentes artísticos em float32")
except Exception as e:
logger.warning(f"Recursos artísticos limitados: {str(e)}")
print(e)
pipe = None
# ================== PROCESSAMENTO PRINCIPAL ==================
def processar_imagem_completa(imagem, escala, modelo, prompt):
try:
logger.divider("Iniciando Processamento")
# Converter entrada
if not isinstance(imagem, Image.Image):
imagem = Image.fromarray(imagem)
# ========= 1. SUPER-RESOLUÇÃO =========
logger.etapa("Processando Super-Resolução")
modelo_sr = modelo_edsr if modelo == "EDSR" else modelo_rdn
params_sr = params_edsr if modelo == "EDSR" else params_rdn
sr_jax = process(
np.array(imagem) / 255.,
modelo_sr,
params_sr,
(round(imagem.height * escala),
round(imagem.width * escala)),
True
)
sr_pil = Image.fromarray(np.array(sr_jax)).convert("RGB")
logger.success(f"SR: {sr_pil.size[0]}x{sr_pil.size[1]}")
# ========= 2. ESTILO BAIXO-RELEVO =========
arte_pil = sr_pil # Fallback
if pipe:
try:
logger.etapa("Aplicando Estilo")
arte_pil = pipe(
prompt=f"BAS-RELIEF {prompt}, marble texture, 8k",
image=sr_pil,
strength=0.6,
num_inference_steps=25,
guidance_scale=7.0,
generator=torch.Generator(device).manual_seed(42)
).images[0]
logger.success("Estilo aplicado")
except Exception as e:
logger.error(f"Erro no estilo: {str(e)}")
print(e)
# ========= 3. MAPA DE PROFUNDIDADE =========
mapa_pil = arte_pil # Fallback
if modelo_profundidade:
try:
logger.etapa("Calculando Profundidade")
inputs = processador_profundidade(arte_pil, return_tensors="pt").to(device)
with torch.no_grad():
depth = modelo_profundidade(**inputs).predicted_depth
depth = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=arte_pil.size[::-1],
mode="bicubic"
).squeeze().cpu().numpy()
depth = (depth - depth.min()) / (depth.max() - depth.min())
mapa_pil = Image.fromarray((depth * 255).astype(np.uint8))
logger.success("Profundidade calculada")
except Exception as e:
logger.error(f"Erro na profundidade: {str(e)}")
print (e)
return sr_pil, arte_pil, mapa_pil
except Exception as e:
logger.error(f"Erro fatal: {str(e)}")
print(e)
return None, None, None
# ================== INTERFACE GRADIO ==================
with gr.Blocks(title="TheraSR Universal", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🏛 TheraSR - Processamento Completo em Float32")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Imagem de Entrada", type="pil")
slider_scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
radio_model = gr.Radio(["EDSR", "RDN"], value="EDSR", label="Modelo")
text_prompt = gr.Textbox(
label="Prompt de Estilo",
value="ancient marble浮雕, ultra detailed, 8k cinematic"
)
btn_process = gr.Button("Processar", variant="primary")
with gr.Column():
output_sr = gr.Image(label="Super-Resolução", interactive=False)
output_art = gr.Image(label="Arte em Relevo", interactive=False)
output_depth = gr.Image(label="Mapa de Profundidade", interactive=False)
btn_process.click(
processar_imagem_completa,
inputs=[input_img, slider_scale, radio_model, text_prompt],
outputs=[output_sr, output_art, output_depth]
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860) |