File size: 7,167 Bytes
e816bb5
2f0ed55
c90ce91
f4a3863
76d0859
 
 
 
0957f7e
76d0859
 
9506fdb
 
e816bb5
f4a3863
b26e605
f4a3863
 
 
 
e816bb5
9506fdb
 
 
 
 
 
 
50f4f41
9506fdb
 
 
 
 
 
 
 
 
e816bb5
9506fdb
 
 
 
 
 
 
 
 
 
 
0957f7e
9506fdb
 
 
 
 
 
 
 
 
 
 
0957f7e
 
c44f938
f4a3863
c44f938
0957f7e
2f0ed55
 
9506fdb
2f0ed55
 
 
 
 
 
0957f7e
9506fdb
c485299
9506fdb
2f0ed55
e816bb5
9506fdb
e816bb5
2f0ed55
e816bb5
19c9e19
e816bb5
9506fdb
19c9e19
9506fdb
 
 
 
 
 
 
 
 
 
2f0ed55
e816bb5
9506fdb
19c9e19
2f0ed55
e816bb5
c90ce91
e816bb5
9506fdb
19c9e19
2f0ed55
 
 
 
9506fdb
 
 
 
 
 
 
 
2f0ed55
9506fdb
 
 
 
 
2f0ed55
9506fdb
2f0ed55
c90ce91
 
 
 
 
9506fdb
2f0ed55
9506fdb
2f0ed55
 
 
 
19c9e19
2f0ed55
 
 
 
 
 
 
c90ce91
 
 
 
 
 
 
 
 
 
2f0ed55
 
19c9e19
 
 
2f0ed55
 
 
 
 
 
9506fdb
 
2f0ed55
 
9506fdb
19c9e19
2f0ed55
 
 
19c9e19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import torch
from time import perf_counter
from transformers import AutoTokenizer, AutoModelForCausalLM

st.set_page_config(
    page_title="Romanian Text Generator",
    page_icon="🇷🇴",
    layout="wide"
)

#############################################
# Python stuff here

model_list = [
    "dumitrescustefan/gpt-neo-romanian-780m",
    "readerbench/RoGPT2-base",
    "readerbench/RoGPT2-medium",
    "readerbench/RoGPT2-large"
]

def greedy_search(model, input_ids, attention_mask, no_repeat_ngram_size, max_length):
    return model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_length=max_length
    )

def beam_search(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, num_beams):
    return model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_length=max_length,
        num_beams=num_beams,
        early_stopping=True
    )

def sampling(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, temperature, top_k, top_p):
    return model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_length=max_length,
        do_sample=True,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p
    )

def typical_sampling(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, temperature, typical_p):
    return model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_length=max_length,
        do_sample=True,
        temperature=temperature,
        typical_p=typical_p,
        top_k=0
    )

@st.cache(allow_output_mutation=True)
def setModel(model_checkpoint):
    model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    return model, tokenizer


#############################################
col_title, _, col_b1, col_b2, col_b3, _ = st.columns([18, 1, 8, 8, 8, 1])
col_title.markdown("**Playground for text generation with Romanian models**")
button_greedy = col_b1.button("Greedy generation")
button_sampling = col_b2.button("Sampling generation")
button_typical = col_b3.button("Typical sampling generation")


col1, _, col2 = st.columns([10, 1, 16])

with col1:
    st.markdown("**Step 1: Select model**")

    model_checkpoint = st.selectbox("Select model", model_list)

    st.markdown("**Step 2: Adjust specific text generation parameters**")

    tab_greedy, tab_sampling, tab_typical = st.tabs(["Greedy", "Sampling", "Typical Sampling"])

    with tab_greedy:
        st.caption("Greedy decoding does not have any special parameters.")

    with tab_sampling:
        top_p = st.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9)
        top_k = st.slider("Top-k", min_value=0, max_value=100, step=10, value=0)

    with tab_typical:
        typical_p = st.slider("Typical-p", min_value=0., max_value=1., step=.10, value=1.0)

    st.markdown("""---""")

    st.markdown("**Step 3: Adjust common text generation parameters**")

    no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
    temperature = st.slider("Temperature", value=1.0, min_value=0.1, max_value=1.0, step=0.1)
    max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)

    # st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")



    def update_prompt():
        st.session_state['text'] = prompt

    prompt = st.selectbox("Select prompt", model_list, on_change=update_prompt)

@st.cache(allow_output_mutation=True)
def setModel(model_checkpoint):
    model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    return model, tokenizer

#####################################################
# show-time

if 'text' not in st.session_state:
    st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'

details = ""
tokenized_text = None

if button_greedy or button_sampling or button_typical:
    if len(st.session_state['text'].strip()) == 0:
        col2.warning("Please input some text!")
        text_element = col2.text_area('Text:', height=400, key="text")
        st.stop()

    model, tokenizer = setModel(model_checkpoint)

    tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")

    if len(tokenized_text.input_ids[0]) + max_length > 512:  # need to keep less words
        keep_last = 512 - max_length
        print(f"keep last: {keep_last}")
        input_ids, attention_mask = tokenized_text.input_ids[0][-keep_last:], tokenized_text.attention_mask[0][-keep_last:]
        previous_ids = tokenized_text.input_ids[0][:keep_last]
        st.warning(f"kept last {keep_last}")
    else:
        input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
        previous_ids = None

    length = min(512, len(input_ids)+max_length)
    timer_mark = perf_counter()
    if button_greedy:
        output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
        details = f"Text generated using greedy decoding in {perf_counter()-timer_mark:.2f}s"
    if button_sampling:
        output = sampling(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length, temperature, top_k, top_p)
        details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k}, temperature={temperature:.2f} in {perf_counter()-timer_mark:.2f}s"
    if button_typical:
        output = typical_sampling(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length, temperature, typical_p)
        details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f} in {perf_counter()-timer_mark:.2f}s"

    if previous_ids is not None:
        print(f"\nConcat prev id: "+tokenizer.decode(previous_ids, skip_special_tokens=True))
        print(f"\nWith current decode: " + tokenizer.decode(output[0], skip_special_tokens=True))
        new_text = tokenizer.decode(torch.cat([previous_ids, output[0]], dim=-1), skip_special_tokens=True)
    else:
        new_text = tokenizer.decode(output[0], skip_special_tokens=True)

    st.session_state['text'] = new_text



text_element = col2.text_area('Text:', height=400, key="text")
col2.markdown("""---""")
col2.text("Statistics and details:")
if details != "":
    col2.caption("   Generation details: " + details)
if tokenized_text is None:
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tt = tokenizer(text_element, add_special_tokens=False, return_tensors="pt")
col2.caption(f"   Text length is {len(text_element)} characters, {len(tt.input_ids[0])} tokens.")