Spaces:
Sleeping
Sleeping
File size: 8,739 Bytes
4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 214a4d6 4322c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import re
import difflib
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
@dataclass
class Segment:
"""Represents a transcript segment"""
speaker: str
timestamp: str
text: str
raw_text: str # For matching purposes - original text without formatting
def parse_transcript(transcript: str) -> List[Segment]:
"""Parse a transcript into segments, handling both markdown and plain formats"""
# This pattern matches both markdown and plain text formats:
# - "**Speaker X** *00:00:00*" or "Speaker X 00:00:00"
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
segments = []
for match in re.finditer(pattern, transcript, re.DOTALL):
speaker, timestamp, text = match.groups()
# Remove any markdown formatting for matching purposes
raw_text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text.strip())
segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
return segments
def clean_text_for_comparison(text: str) -> str:
"""Clean text for better comparison"""
# Remove all markdown, punctuation, and lowercase for better matching
text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text)
text = re.sub(r'[^\w\s]', '', text.lower())
return text.strip()
def match_segments(auto_segments: List[Segment], human_segments: List[Segment]) -> List[Tuple[int, int]]:
"""Match segments between auto and human transcripts using text similarity
Returns list of tuples (auto_index, human_index)"""
matches = []
# Prepare clean versions of texts for comparison
auto_texts = [clean_text_for_comparison(seg.raw_text) for seg in auto_segments]
human_texts = [clean_text_for_comparison(seg.raw_text) for seg in human_segments]
# Try to match each human segment to an auto segment
for human_idx, human_text in enumerate(human_texts):
best_match_idx = -1
best_similarity = 0
for auto_idx, auto_text in enumerate(auto_texts):
# Skip if this auto segment is already matched
if any(match[0] == auto_idx for match in matches):
continue
# Calculate similarity
similarity = difflib.SequenceMatcher(None, auto_text, human_text).ratio()
if similarity > best_similarity and similarity >= 0.6: # Threshold
best_similarity = similarity
best_match_idx = auto_idx
if best_match_idx >= 0:
matches.append((best_match_idx, human_idx))
return matches
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[Tuple[int, int]]) -> str:
"""Update timestamps in human transcript based on matches"""
updated_segments = human_segments.copy()
# Update timestamps based on matches
for auto_idx, human_idx in matches:
# Keep the human-edited text, update only the timestamp
updated_segments[human_idx] = Segment(
speaker=human_segments[human_idx].speaker,
timestamp=auto_segments[auto_idx].timestamp,
text=human_segments[human_idx].text,
raw_text=human_segments[human_idx].raw_text
)
# Determine if the human transcript uses markdown formatting
is_markdown = "**" in human_segments[0].text or "*" in human_segments[0].timestamp if human_segments else False
# Generate the updated transcript
result = []
for segment in updated_segments:
if is_markdown:
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
else:
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
return "\n\n".join(result)
def get_unmatched_auto_segments(auto_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
"""Get indices of auto segments that weren't matched to any human segment"""
matched_auto_indices = {match[0] for match in matches}
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
def get_unmatched_human_segments(human_segments: List[Segment], matches: List[Tuple[int, int]]) -> List[int]:
"""Get indices of human segments that weren't matched to any auto segment"""
matched_human_indices = {match[1] for match in matches}
return [i for i in range(len(human_segments)) if i not in matched_human_indices]
def format_segments(segments: List[Segment], indices: List[int], is_markdown: bool) -> str:
"""Format segments for display"""
if not indices:
return "None"
result = []
for idx in indices:
segment = segments[idx]
if is_markdown:
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
else:
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
return "\n\n".join(result)
def process_transcripts(auto_transcript: str, human_transcript: str):
"""Process transcripts and update timestamps"""
# Parse transcripts
auto_segments = parse_transcript(auto_transcript)
human_segments = parse_transcript(human_transcript)
# Basic validation
if not auto_segments or not human_segments:
return "Error: Could not parse transcripts. Check formatting.", "", ""
# Match segments
matches = match_segments(auto_segments, human_segments)
# Find unmatched segments
unmatched_auto = get_unmatched_auto_segments(auto_segments, matches)
unmatched_human = get_unmatched_human_segments(human_segments, matches)
# Determine if the format uses markdown
is_markdown = "**" in human_transcript or "*" in human_transcript
# Update timestamps
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
# Format statistics
stats = f"### Matching Statistics\n\n"
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
stats += f"- Human-edited segments: {len(human_segments)}\n"
stats += f"- Matched segments: {len(matches)}\n"
stats += f"- Unmatched auto segments (new content): {len(unmatched_auto)}\n"
stats += f"- Unmatched human segments (removed content): {len(unmatched_human)}\n"
# Format unmatched segments
if unmatched_auto:
stats += f"\n### New Content (In Auto-generated but not in Human-edited)\n\n"
stats += format_segments(auto_segments, unmatched_auto, is_markdown)
if unmatched_human:
stats += f"\n### Removed Content (In Human-edited but not in Auto-generated)\n\n"
stats += format_segments(human_segments, unmatched_human, is_markdown)
return updated_transcript, stats
# Create Gradio interface
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
gr.Markdown("""
# ๐๏ธ Transcript Timestamp Updater
This tool updates timestamps in human-edited transcripts based on auto-generated transcripts.
## Instructions:
1. Paste your new auto-generated transcript (with updated timestamps)
2. Paste your human-edited transcript (with old timestamps)
3. Click "Update Timestamps"
The tool will match segments between transcripts and update the timestamps while preserving all human edits.
""")
with gr.Row():
with gr.Column():
auto_transcript = gr.TextArea(
label="Auto-Generated Transcript (with new timestamps)",
placeholder="Paste the auto-generated transcript here...",
lines=15
)
with gr.Column():
human_transcript = gr.TextArea(
label="Human-Edited Transcript (with old timestamps)",
placeholder="Paste the human-edited transcript here...",
lines=15
)
update_btn = gr.Button("Update Timestamps")
with gr.Tabs():
with gr.TabItem("Updated Transcript"):
updated_transcript = gr.TextArea(
label="Updated Transcript",
placeholder="The updated transcript will appear here...",
lines=20
)
with gr.TabItem("Statistics"):
stats = gr.Markdown(
label="Statistics",
value="Statistics will appear here..."
)
update_btn.click(
fn=process_transcripts,
inputs=[auto_transcript, human_transcript],
outputs=[updated_transcript, stats]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |