File size: 2,604 Bytes
f2036f2
 
 
6d89f79
f2036f2
 
6d89f79
 
 
 
 
 
 
 
 
 
 
 
f2036f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d89f79
f2036f2
6d89f79
f2036f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d89f79
f2036f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import streamlit as st
import tensorflow as tf
from tensorflow.keras import layers, models, applications
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt

# Load the dataset
dataset_name = "cats_vs_dogs"
(ds_train, ds_val), ds_info = tfds.load(dataset_name, split=['train[:80%]', 'train[80%:]'], with_info=True, as_supervised=True)

# Preprocess the dataset
def preprocess_image(image, label):
    image = tf.image.resize(image, (150, 150))
    image = image / 255.0
    return image, label

ds_train = ds_train.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
ds_val = ds_val.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)

# Streamlit app
st.title("Transfer Learning with VGG16 for Image Classification")

# Input parameters
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
epochs = st.slider("Epochs", 5, 50, 10, 5)

# Load the pre-trained VGG16 model
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))

# Freeze the convolutional base
base_model.trainable = False

# Add custom layers on top
model = models.Sequential([
    base_model,
    layers.Flatten(),
    layers.Dense(256, activation='relu'),
    layers.Dropout(0.5),
    layers.Dense(1, activation='sigmoid')  # Change the output layer based on the number of classes
])

model.summary()

# Compile the model
model.compile(optimizer='adam',
              loss='binary_crossentropy',  # Change loss function based on the number of classes
              metrics=['accuracy'])

# Train the model
if st.button("Train Model"):
    with st.spinner("Training the model..."):
        history = model.fit(
            ds_train,
            epochs=epochs,
            validation_data=ds_val
        )
        
        st.success("Model training completed!")

    # Display training curves
    st.subheader("Training and Validation Accuracy")
    fig, ax = plt.subplots()
    ax.plot(history.history['accuracy'], label='Training Accuracy')
    ax.plot(history.history['val_accuracy'], label='Validation Accuracy')
    ax.set_xlabel('Epoch')
    ax.set_ylabel('Accuracy')
    ax.legend()
    st.pyplot(fig)

    st.subheader("Training and Validation Loss")
    fig, ax = plt.subplots()
    ax.plot(history.history['loss'], label='Training Loss')
    ax.plot(history.history['val_loss'], label='Validation Loss')
    ax.set_xlabel('Epoch')
    ax.set_ylabel('Loss')
    ax.legend()
    st.pyplot(fig)

# Evaluate the model
if st.button("Evaluate Model"):
    test_loss, test_acc = model.evaluate(ds_val, verbose=2)
    st.write(f"Validation accuracy: {test_acc}")