echen01
add PTI
2e34814
raw
history blame
10.5 kB
# Taken from the https://github.com/chenxi116/DeepLabv3.pytorch repository.
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
import os
__all__ = ["ResNet", "resnet50", "resnet101", "resnet152"]
model_urls = {
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
}
class Conv2d(nn.Conv2d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
):
super(Conv2d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
def forward(self, x):
# return super(Conv2d, self).forward(x)
weight = self.weight
weight_mean = (
weight.mean(dim=1, keepdim=True)
.mean(dim=2, keepdim=True)
.mean(dim=3, keepdim=True)
)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(
x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
)
class ASPP(nn.Module):
def __init__(
self,
C,
depth,
num_classes,
conv=nn.Conv2d,
norm=nn.BatchNorm2d,
momentum=0.0003,
mult=1,
):
super(ASPP, self).__init__()
self._C = C
self._depth = depth
self._num_classes = num_classes
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.relu = nn.ReLU(inplace=True)
self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False)
self.aspp2 = conv(
C,
depth,
kernel_size=3,
stride=1,
dilation=int(6 * mult),
padding=int(6 * mult),
bias=False,
)
self.aspp3 = conv(
C,
depth,
kernel_size=3,
stride=1,
dilation=int(12 * mult),
padding=int(12 * mult),
bias=False,
)
self.aspp4 = conv(
C,
depth,
kernel_size=3,
stride=1,
dilation=int(18 * mult),
padding=int(18 * mult),
bias=False,
)
self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False)
self.aspp1_bn = norm(depth, momentum)
self.aspp2_bn = norm(depth, momentum)
self.aspp3_bn = norm(depth, momentum)
self.aspp4_bn = norm(depth, momentum)
self.aspp5_bn = norm(depth, momentum)
self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1, bias=False)
self.bn2 = norm(depth, momentum)
self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1)
def forward(self, x):
x1 = self.aspp1(x)
x1 = self.aspp1_bn(x1)
x1 = self.relu(x1)
x2 = self.aspp2(x)
x2 = self.aspp2_bn(x2)
x2 = self.relu(x2)
x3 = self.aspp3(x)
x3 = self.aspp3_bn(x3)
x3 = self.relu(x3)
x4 = self.aspp4(x)
x4 = self.aspp4_bn(x4)
x4 = self.relu(x4)
x5 = self.global_pooling(x)
x5 = self.aspp5(x5)
x5 = self.aspp5_bn(x5)
x5 = self.relu(x5)
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode="bilinear", align_corners=True)(
x5
)
x = torch.cat((x1, x2, x3, x4, x5), 1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
dilation=1,
conv=None,
norm=None,
):
super(Bottleneck, self).__init__()
self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm(planes)
self.conv2 = conv(
planes,
planes,
kernel_size=3,
stride=stride,
dilation=dilation,
padding=dilation,
bias=False,
)
self.bn2 = norm(planes)
self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = norm(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self, block, layers, num_classes, num_groups=None, weight_std=False, beta=False
):
self.inplanes = 64
self.norm = (
lambda planes, momentum=0.05: nn.BatchNorm2d(planes, momentum=momentum)
if num_groups is None
else nn.GroupNorm(num_groups, planes)
)
self.conv = Conv2d if weight_std else nn.Conv2d
super(ResNet, self).__init__()
if not beta:
self.conv1 = self.conv(
3, 64, kernel_size=7, stride=2, padding=3, bias=False
)
else:
self.conv1 = nn.Sequential(
self.conv(3, 64, 3, stride=2, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
)
self.bn1 = self.norm(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2)
self.aspp = ASPP(
512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm
)
for m in self.modules():
if isinstance(m, self.conv):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
self.conv(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
dilation=max(1, dilation / 2),
bias=False,
),
self.norm(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
dilation=max(1, dilation / 2),
conv=self.conv,
norm=self.norm,
)
)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
dilation=dilation,
conv=self.conv,
norm=self.norm,
)
)
return nn.Sequential(*layers)
def forward(self, x):
size = (x.shape[2], x.shape[3])
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.aspp(x)
x = nn.Upsample(size, mode="bilinear", align_corners=True)(x)
return x
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls["resnet50"]))
return model
def resnet101(path=None, pretrained=False, num_groups=None, weight_std=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(
Bottleneck,
[3, 4, 23, 3],
num_groups=num_groups,
weight_std=weight_std,
**kwargs
)
if pretrained:
model_dict = model.state_dict()
if num_groups and weight_std:
path = os.path.join(os.path.dirname(path), "R-101-GN-WS.pth.tar")
pretrained_dict = torch.load(path)
overlap_dict = {
k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict
}
assert len(overlap_dict) == 312
elif not num_groups and not weight_std:
pretrained_dict = model_zoo.load_url(model_urls["resnet101"])
overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
else:
raise ValueError("Currently only support BN or GN+WS")
model_dict.update(overlap_dict)
model.load_state_dict(model_dict)
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls["resnet152"]))
return model