Spaces:
Runtime error
Runtime error
# Taken from the https://github.com/chenxi116/DeepLabv3.pytorch repository. | |
import torch | |
import torch.nn as nn | |
import math | |
import torch.utils.model_zoo as model_zoo | |
from torch.nn import functional as F | |
import os | |
__all__ = ["ResNet", "resnet50", "resnet101", "resnet152"] | |
model_urls = { | |
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", | |
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", | |
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", | |
} | |
class Conv2d(nn.Conv2d): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=True, | |
): | |
super(Conv2d, self).__init__( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
) | |
def forward(self, x): | |
# return super(Conv2d, self).forward(x) | |
weight = self.weight | |
weight_mean = ( | |
weight.mean(dim=1, keepdim=True) | |
.mean(dim=2, keepdim=True) | |
.mean(dim=3, keepdim=True) | |
) | |
weight = weight - weight_mean | |
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 | |
weight = weight / std.expand_as(weight) | |
return F.conv2d( | |
x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups | |
) | |
class ASPP(nn.Module): | |
def __init__( | |
self, | |
C, | |
depth, | |
num_classes, | |
conv=nn.Conv2d, | |
norm=nn.BatchNorm2d, | |
momentum=0.0003, | |
mult=1, | |
): | |
super(ASPP, self).__init__() | |
self._C = C | |
self._depth = depth | |
self._num_classes = num_classes | |
self.global_pooling = nn.AdaptiveAvgPool2d(1) | |
self.relu = nn.ReLU(inplace=True) | |
self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False) | |
self.aspp2 = conv( | |
C, | |
depth, | |
kernel_size=3, | |
stride=1, | |
dilation=int(6 * mult), | |
padding=int(6 * mult), | |
bias=False, | |
) | |
self.aspp3 = conv( | |
C, | |
depth, | |
kernel_size=3, | |
stride=1, | |
dilation=int(12 * mult), | |
padding=int(12 * mult), | |
bias=False, | |
) | |
self.aspp4 = conv( | |
C, | |
depth, | |
kernel_size=3, | |
stride=1, | |
dilation=int(18 * mult), | |
padding=int(18 * mult), | |
bias=False, | |
) | |
self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False) | |
self.aspp1_bn = norm(depth, momentum) | |
self.aspp2_bn = norm(depth, momentum) | |
self.aspp3_bn = norm(depth, momentum) | |
self.aspp4_bn = norm(depth, momentum) | |
self.aspp5_bn = norm(depth, momentum) | |
self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1, bias=False) | |
self.bn2 = norm(depth, momentum) | |
self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1) | |
def forward(self, x): | |
x1 = self.aspp1(x) | |
x1 = self.aspp1_bn(x1) | |
x1 = self.relu(x1) | |
x2 = self.aspp2(x) | |
x2 = self.aspp2_bn(x2) | |
x2 = self.relu(x2) | |
x3 = self.aspp3(x) | |
x3 = self.aspp3_bn(x3) | |
x3 = self.relu(x3) | |
x4 = self.aspp4(x) | |
x4 = self.aspp4_bn(x4) | |
x4 = self.relu(x4) | |
x5 = self.global_pooling(x) | |
x5 = self.aspp5(x5) | |
x5 = self.aspp5_bn(x5) | |
x5 = self.relu(x5) | |
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode="bilinear", align_corners=True)( | |
x5 | |
) | |
x = torch.cat((x1, x2, x3, x4, x5), 1) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.conv3(x) | |
return x | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__( | |
self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
dilation=1, | |
conv=None, | |
norm=None, | |
): | |
super(Bottleneck, self).__init__() | |
self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = norm(planes) | |
self.conv2 = conv( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=stride, | |
dilation=dilation, | |
padding=dilation, | |
bias=False, | |
) | |
self.bn2 = norm(planes) | |
self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False) | |
self.bn3 = norm(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__( | |
self, block, layers, num_classes, num_groups=None, weight_std=False, beta=False | |
): | |
self.inplanes = 64 | |
self.norm = ( | |
lambda planes, momentum=0.05: nn.BatchNorm2d(planes, momentum=momentum) | |
if num_groups is None | |
else nn.GroupNorm(num_groups, planes) | |
) | |
self.conv = Conv2d if weight_std else nn.Conv2d | |
super(ResNet, self).__init__() | |
if not beta: | |
self.conv1 = self.conv( | |
3, 64, kernel_size=7, stride=2, padding=3, bias=False | |
) | |
else: | |
self.conv1 = nn.Sequential( | |
self.conv(3, 64, 3, stride=2, padding=1, bias=False), | |
self.conv(64, 64, 3, stride=1, padding=1, bias=False), | |
self.conv(64, 64, 3, stride=1, padding=1, bias=False), | |
) | |
self.bn1 = self.norm(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2) | |
self.aspp = ASPP( | |
512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm | |
) | |
for m in self.modules(): | |
if isinstance(m, self.conv): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2.0 / n)) | |
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1): | |
downsample = None | |
if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
self.conv( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
dilation=max(1, dilation / 2), | |
bias=False, | |
), | |
self.norm(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
stride, | |
downsample, | |
dilation=max(1, dilation / 2), | |
conv=self.conv, | |
norm=self.norm, | |
) | |
) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
dilation=dilation, | |
conv=self.conv, | |
norm=self.norm, | |
) | |
) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
size = (x.shape[2], x.shape[3]) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.aspp(x) | |
x = nn.Upsample(size, mode="bilinear", align_corners=True)(x) | |
return x | |
def resnet50(pretrained=False, **kwargs): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls["resnet50"])) | |
return model | |
def resnet101(path=None, pretrained=False, num_groups=None, weight_std=False, **kwargs): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet( | |
Bottleneck, | |
[3, 4, 23, 3], | |
num_groups=num_groups, | |
weight_std=weight_std, | |
**kwargs | |
) | |
if pretrained: | |
model_dict = model.state_dict() | |
if num_groups and weight_std: | |
path = os.path.join(os.path.dirname(path), "R-101-GN-WS.pth.tar") | |
pretrained_dict = torch.load(path) | |
overlap_dict = { | |
k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict | |
} | |
assert len(overlap_dict) == 312 | |
elif not num_groups and not weight_std: | |
pretrained_dict = model_zoo.load_url(model_urls["resnet101"]) | |
overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} | |
else: | |
raise ValueError("Currently only support BN or GN+WS") | |
model_dict.update(overlap_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def resnet152(pretrained=False, **kwargs): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls["resnet152"])) | |
return model | |