File size: 12,305 Bytes
e8568cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b41e19
e8568cf
 
 
 
5b41e19
e8568cf
 
5b41e19
e8568cf
 
4a21660
e8568cf
 
 
5b41e19
e8568cf
 
 
 
 
 
 
5b41e19
f751692
e8568cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c9e29
e8568cf
 
 
 
 
 
 
 
 
 
 
 
 
 
2d049e7
0acebe0
2d049e7
cc16465
e8568cf
 
cc16465
e8568cf
 
cc16465
e8568cf
 
e05ff45
e8568cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# from flask import Flask
# from PIL import Image
# import numpy as np
# import tensorflow as tf
# import requests
# import io

# import os 

# os.system("python3 -m http.server 7860 -b 0.0.0.0 &")
# # Initialize the Flask application
# app = Flask(__name__)

# # Load the trained model
# model = tf.keras.models.load_model('./save_model.h5',compile=False)


# @app.route('/')
# def aaa():
#     return "hi"
    
# # Route for object detection
# @app.route('/detect-object/<id>', methods=['POST','GET'])
# def detect_pothole(id):
#     # Get the image file from the request
#     try :
#         image_file  =  io.BytesIO(requests.get(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0").content)

#         print(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0")

#         # Load and preprocess the image
#         image = Image.open(image_file)
#         image = image.resize((64, 64))
#         image = np.array(image)
#         image = image / 255.0
#         image = np.expand_dims(image, axis=0)

#         # Debug statements
#         print('Image shape:', image.shape)
#         print('Image data:', image)

#         # Make predictions
#         result = model.predict(image)

#         # Convert the prediction to a label
#         if result[0][0] == 1:
#             prediction = 'pothole'
#         else:
#             prediction = 'Normal'

#     except :
#         prediction = 'error'

#     # Return the prediction as a JSON response
#     response = {'prediction': prediction}

#     return response

# # Run the Flask application
# if __name__ == '__main__':
#     app.run()



from flask import Flask
from flask import render_template
import random
from flask import Flask, request
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np

import nltk
from nltk.corpus import stopwords

import emoji
import re
from sklearn.pipeline import Pipeline

MAX_LENGTH =  50
MAX_CURRENCY_FLAG = 2
MAX_SPAM_WORDS = 1
MAX_EMOJI = 2
MAX_CONATANS = 1
MAX_EMAIL= 1
MAX_PHONE = 1


class RemoveStopWordsPunctuation:
    def fit(self, x, y=None):
        return self

    def __remove_punctuation_stopwords(self, text):
        pattern = re.compile("[{}]".format(re.escape("!\"#&'()*,-/:;<=>?[\\]^_`{|}~")))
        text = " ".join(
            [
                word.strip()
                for word in pattern.sub(" ", text.lower()).split()
                if word not in set(stopwords.words("english"))
            ]
        )
        return text

    def transform(self, df):
        df["Comment"] = df["Comment"].apply(self.__remove_punctuation_stopwords)
        return df


class AddLengthFlag:
    def fit(self, x, y=None):
        return self

    def transform(self, X):
        X["length"] = X["Comment"].str.len().astype(np.float32) / MAX_LENGTH
        return X


class AddCurrencyFlag:
    def __init__(self) -> None:
        self.currency_symbols = ["โ‚ค", "โ‚จ", "โ‚ฌ", "โ‚น", "โ‚ฟ", "$"]
        self.pattern = "([\$โ‚คโ‚จโ‚ฌโ‚นโ‚ฟ]+ *[0-9]* *[\.,]?[0-9]*)|([0-9]* *[\.,]?[0-9]* *[\$โ‚คโ‚จโ‚ฌโ‚นโ‚ฟ]+)"

    def fit(self, x, y=None):
        return self

    def __add_currency_count(self, text):
        return len(re.findall(self.pattern, text)) / MAX_CURRENCY_FLAG

    # def __add_currency_count(self,text):
    #     return sum(text.count(symbol) for symbol in self.currency_symbols )

    def transform(self, df):
        df["currency"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
        return df


class AddSpamWordsFlag:
    def __init__(self) -> None:
        self.spam_words = [
            "morning",
            "good"
            "urgent",
            "exclusive",
            "limited time",
            "free",
            "guaranteed",
            "act now",
            "discount",
            "special offer",
            "prize",
            "instant",
            "cash",
            "save",
            "win",
            "best",
            "secret",
            "incredible",
            "congratulations",
            "approved",
            "risk free",
            "hidden",
            "bonus",
            "sale",
            "amazing",
            "extra cash",
            "opportunity",
            "easy",
            "double your",
            "best price",
            "cash back",
            "deal",
            "earn",
            "money",
            "no obligation",
            "profit",
            "results",
            "exciting",
            "unbelievable",
            "jackpot",
            "fantastic",
            "instant access",
            "million dollars",
            "discounted",
            "last chance",
            "exclusive offer",
            "big savings",
            "limited offer",
            "free trial",
            "special promotion",
            "secret revealed",
            "valuable",
            "money-back guarantee",
            "lowest price",
            "save money",
            "make money",
            "no risk",
            "exclusive deal",
            "limited supply",
            "huge",
            "incredible offer",
            "prize winner",
            "earn extra income",
            "limited spots",
            "new offer",
            "best deal",
            "don't miss out",
            "great savings",
            "top offer",
            "double your income",
            "discount code",
            "fast cash",
            "top-rated",
            "best value",
            "no cost",
            "elite",
            "act fast",
            "unbeatable",
            "cash prize",
            "limited availability",
            "special discount",
            "quick cash",
            "no catch",
            "instant approval",
            "big discount",
            "easy money",
            "insider",
            "invitation",
            "free shipping",
            "huge discount",
            "extra income",
            "secret formula",
            "no strings attached",
            "money-making",
            "dream come true",
            "massive",
            "free gift",
            "incredible opportunity",
            "risk-free trial",
            "instant money",
            "special price",
            "no purchase necessary",
            "now",
        ]

    def fit(self, x, y=None):
        return self

    def __add_currency_count(self, text):
        return float(sum(text.count(symbol) for symbol in self.spam_words) / MAX_SPAM_WORDS)

    def transform(self, df):
        df["spam_word"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
        return df


class AddEmojiFlag:
    def __init__(self) -> None:
        self.emoji_symbols = "[๐Ÿ’ญ|๐Ÿ”|๐Ÿ†—|๐ŸŽ‰|๐ŸŽŠ|๐Ÿ“ฏ|๐Ÿ™Œ|๐Ÿ˜‚|๐Ÿ’ธ|๐Ÿ‘‰|๐Ÿ“ข|๐Ÿš€|๐Ÿ’ฒ|๐Ÿ’ฃ|๐Ÿ”ฑ|๐Ÿ’ผ|๐Ÿ†™|โณ|โœจ|๐Ÿ’Œ|๐Ÿ’Ž|๐Ÿ†•|๐Ÿ”ž|๐Ÿ’ก|๐Ÿ’ฐ|๐Ÿ‘‘|โญ|๐ŸŒŸ|๐ŸŽค|โšก|๐Ÿ“ˆ|๐Ÿ’ต|๐Ÿ†|๐Ÿ’ช|๐Ÿ”“|๐Ÿ†“|๐ŸŽฐ|โŒš|๐Ÿšจ|๐Ÿ’ข|๐Ÿ“ฎ|๐Ÿ”ฅ|๐ŸŽˆ|๐ŸŽฅ|๐Ÿ””|๐Ÿ’ฏ|๐ŸŽถ|๐Ÿ”—|๐ŸŽ|๐Ÿ“š|๐Ÿ”Š|๐Ÿ‘|๐Ÿ‘|๐Ÿ“ฑ|๐Ÿ“|๐Ÿค‘|๐Ÿ…|๐Ÿ”’|๐Ÿ“ฃ|๐Ÿ’ฅ]"

    def fit(self, x, y=None):
        return self

    def __add_currency_count(self, text):
        return float(len(re.findall(self.emoji_symbols, text)) / MAX_EMOJI)

    def transform(self, df):
        df["emoji"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
        return df


class AddContainFlag:
    def fit(self, x, y=None):
        return self

    def __add_first_count(self, text):
        pattern = "[0-9]*%|T&C"
        return len(re.findall(pattern, text))

    def __add_second_count(self, text):
        pattern = "(https:\/\/www\.|http:\/\/www\.|https:\/\/|http:\/\/)?[a-zA-Z0-9]{2,}(\.[a-zA-Z0-9]{2,})(\.[a-zA-Z0-9]{2,})?"
        return len(re.findall(pattern, text))

    def transform(self, df):
        df["contain"] = df["Comment"].apply(self.__add_first_count)
        df["contain"] = df["contain"] + df["Comment"].apply(self.__add_second_count)
        df['contain'] = df['contain'].astype(np.float32) / MAX_CONATANS
        return df


class AddEmailFlag:
    def fit(self, x, y=None):
        return self

    def __add_email_count(self, text):
        pattern = "[\w]+@[\w]+\.\w+"
        return float(len(re.findall(pattern, text))  /MAX_EMAIL)

    def transform(self, df):
        df["email"] = df["Comment"].apply(self.__add_email_count).astype(np.float32)
        return df


class AddPhoneFlag:
    def fit(self, x, y=None):
        return self

    def __add_phone_no_count(self, text):
        pattern = "\+?[0-9]?[0-9]? ?0?[0-9]{10}"
        return len(re.findall(pattern, text))

    def __add_phone_no_count_1(self, text):
        pattern = "\+?[0-9]?\d{3}[ -]?\d{3}[ -]?\d{4}"
        return len(re.findall(pattern, text))

    def transform(self, df):
        df["phone"] = df["Comment"].apply(self.__add_phone_no_count)
        df["phone"] = df["phone"] + df["Comment"].apply(self.__add_phone_no_count_1)
        df["phone"] = df["phone"].astype(np.float32) / MAX_PHONE


        return df


class RemovePhoneLinkEmail:
    def fit(self, x, y=None):
        return self

    def __remove(self, text):
        text = re.sub("\$[0-9]*([\.,][0-9]{2})*\$?", "", text)
        text = re.sub("\+?[0-9]?[0-9]? ?0?[0-9]{10}", "", text)
        text = re.sub("\+?[0-9]?\d{3}[ -]?\d{3}[ -]?\d{4}", "", text)
        text = re.sub(
            r"(https:\/\/www\.|http:\/\/www\.|https:\/\/|http:\/\/)?[a-zA-Z0-9]{2,}(\.[a-zA-Z0-9]{2,})(\.[a-zA-Z0-9]{2,})?",
            "",
            text,
        )
        text = re.sub(r"[\w]+@[\w]+\.\w+", "", text)
        text = emoji.replace_emoji(text)
        return text

    def transform(self, df):
        df["Comment"] = df["Comment"].apply(self.__remove)
        return df


class LemmatizeText:
    def __init__(self):
        self.lemmatizer = nltk.WordNetLemmatizer()

    def fit(self, X, y=None):
        return self

    def __lemmatize_text(self, text):
        return " ".join(
            [self.lemmatizer.lemmatize(word) for word in re.split("\W+", text)]
        ).strip()

    def transform(self, df):
        df["Comment"] = df["Comment"].map(lambda text: self.__lemmatize_text(text))
        return df



pipe =  Pipeline([

    ("AddCurrencyFlag",AddCurrencyFlag()),
    ("AddSpamWordsFlag",AddSpamWordsFlag()),
    ("AddEmojiFlag",AddEmojiFlag()),
    ("AddContainFlag",AddContainFlag()),
    ("AddEmailFlag",AddEmailFlag()),
    ("AddPhoneFlag",AddPhoneFlag()),

    ("RemovePhoneLinkEmail",RemovePhoneLinkEmail()),
    ("RemoveStopWordsPunctuation",RemoveStopWordsPunctuation()),

    ("LemmatizeText",LemmatizeText()),

    ("AddLengthFlag",AddLengthFlag()),


])
model = tf.keras.models.load_model('spam-model.h5', custom_objects={'KerasLayer':hub.KerasLayer})

def precidt(msg):
    if type(msg) is str:
        df = pd.DataFrame([msg],columns=["Comment"])
    elif type(msg) is list:
        df = pd.DataFrame(msg,columns=["Comment"])
    else:
        return []

    df = pipe.transform(df)
    table = df
    df = {
        "Comment": tf.convert_to_tensor(df["Comment"],dtype=tf.string),
        "Length": tf.convert_to_tensor(df["length"], dtype=tf.float32),
        "Currency": tf.convert_to_tensor(df["currency"], dtype=tf.float32),
        "Spam Words": tf.convert_to_tensor(df["spam_word"], dtype=tf.float32),
        "Emoji": tf.convert_to_tensor(df["emoji"], dtype=tf.float32),
        "Contain": tf.convert_to_tensor(df["contain"], dtype=tf.float32),
        "Email": tf.convert_to_tensor(df["email"], dtype=tf.float32),
        "Phone": tf.convert_to_tensor(df["phone"], dtype=tf.float32)
    }
    return [ i*100  for i in model.predict(df).reshape(-1,) ],table



app = Flask(__name__,template_folder="templates")

@app.route("/")
def hello():
    return render_template('index.html')


@app.route("/api/data", methods=["POST"])
def main():
    data = request.get_json()['text']

    value = precidt(data)
    print(value)
    value = value[0][0]
    if (value > 85):
        score =  "Poor"

    elif (value >50):
        score = "Okay"

    else:
        score = "Great"

    return {"value": "{:.2f} % SPAM".format(value) , "score" : f"<span class='text-poor'>{score}</span>"}


app.run()