FairUP / src /aif360 /sklearn /postprocessing /reject_option_classification.py
erasmopurif's picture
First commit
d2a8669
import warnings
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.model_selection import GridSearchCV
from sklearn.utils.validation import check_is_fitted
from aif360.sklearn.metrics import statistical_parity_difference
from aif360.sklearn.metrics import average_odds_error
from aif360.sklearn.metrics import equal_opportunity_difference
from aif360.sklearn.metrics import disparate_impact_ratio
from aif360.sklearn.metrics import make_scorer
from aif360.sklearn.utils import check_groups
class RejectOptionClassifier(BaseEstimator, ClassifierMixin):
"""Reject option based classification (ROC) post-processor.
Reject option classification is a post-processing technique that gives
favorable outcomes to unprivileged groups and unfavorable outcomes to
privileged groups in a confidence band around the decision boundary with the
highest uncertainty [#kamiran12]_.
Note:
A :class:`~sklearn.pipeline.Pipeline` expects a single estimation step
but this class requires an estimator's predictions as input. See
:class:`PostProcessingMeta` for a workaround.
See also:
:class:`PostProcessingMeta`, :class:`RejectOptionClassifierCV`
References:
.. [#kamiran12] `F. Kamiran, A. Karim, and X. Zhang, "Decision Theory
for Discrimination-Aware Classification," IEEE International
Conference on Data Mining, 2012.
<https://ieeexplore.ieee.org/abstract/document/6413831>`_
Attributes:
prot_attr_ (str or list(str)): Protected attribute(s) used for post-
processing.
groups_ (array, shape (2,)): A list of group labels known to the
classifier. Note: this algorithm require a binary division of the
data.
classes_ (array, shape (num_classes,)): A list of class labels known to
the classifier. Note: this algorithm treats all non-positive
outcomes as negative (binary classification only).
pos_label_ (scalar): The label of the positive class.
priv_group_ (scalar): The label of the privileged group.
Examples:
RejectOptionClassifier can be easily paired with GridSearchCV to
find the best threshold and margin with respect to a fairness measure:
>>> from sklearn.model_selection import GridSearchCV
>>> roc = RejectOptionClassifier()
>>> param = [{'threshold': [t],
'margin': np.arange(0.05, min(t, 1-t)+0.025, 0.05)}
... for t in np.arange(0.05, 1., 0.05)]
>>> stat_par = make_scorer(statistical_parity_difference)
>>> scoring = {'bal_acc': 'balanced_accuracy', 'stat_par': stat_par}
>>> def refit(cv_res):
... return np.ma.array(cv_res['mean_test_bal_acc'],
... mask=cv_res['mean_test_stat_par'] < -0.1).argmax()
...
>>> grid = GridSearchCV(roc, param, scoring=scoring, refit=refit)
Or, alternatively, this can be done in one step with
RejectOptionClassifierCV:
>>> grid = RejectOptionClassifierCV(scoring='statistical_parity')
"""
def __init__(self, prot_attr=None, threshold=0.5, margin=0.1):
"""
Args:
prot_attr (single label or list-like, optional): Protected
attribute(s) to use in the post-processing. If more than one
attribute, all combinations of values (intersections) are
considered. Default is ``None`` meaning all protected attributes
from the dataset are used. Note: This algorithm requires there
be exactly 2 groups (privileged and unprivileged).
threshold (scalar): Classification threshold. Probability estimates
greater than this value are considered positive. Must be between
0 and 1.
margin (scalar): Half width of the critical region. Estimates within
the critical region are "rejected" and assigned according to
their group. Must be between 0 and min(threshold, 1-threshold).
metric ('statistical_parity', 'average_odds', 'equal_opportunity',
or callable):
"""
self.prot_attr = prot_attr
self.threshold = threshold
self.margin = margin
def _more_tags(self):
return {'requires_proba': True}
def fit(self, X, y, labels=None, pos_label=1, priv_group=1,
sample_weight=None):
"""This is essentially a no-op; it simply validates the inputs and
stores them for predict.
Args:
X (array-like): Ignored.
y (array-like): Ground-truth (correct) target values. Note: one of X
or y must contain protected attribute information.
labels (list, optional): The ordered set of labels values. Must
match the order of columns in X if provided. By default,
all labels in y are used in sorted order.
pos_label (scalar, optional): The label of the positive class.
priv_group (scalar, optional): The label of the privileged group.
sample_weight (array-like, optional): Ignored.
Returns:
self
"""
try:
groups, self.prot_attr_ = check_groups(X, self.prot_attr,
ensure_binary=True)
except TypeError:
groups, self.prot_attr_ = check_groups(y, self.prot_attr,
ensure_binary=True)
self.classes_ = np.array(labels) if labels is not None else np.unique(y)
self.groups_ = np.unique(groups)
self.pos_label_ = pos_label
self.priv_group_ = priv_group
if len(self.classes_) != 2:
raise ValueError('Only binary classification is supported.')
if pos_label not in self.classes_:
raise ValueError('pos_label={} is not in the set of labels. The '
'valid values are:\n{}'.format(pos_label, self.classes_))
if priv_group not in self.groups_:
raise ValueError('priv_group={} is not in the set of groups. The '
'valid values are:\n{}'.format(priv_group, self.groups_))
if not 0.0 <= self.threshold <= 1.0:
raise ValueError('threshold must be between 0.0 and 1.0, '
'threshold={}'.format(self.threshold))
if not 0.0 <= self.margin <= min(self.threshold, 1 - self.threshold):
raise ValueError('margin must be between 0.0 and {}, margin={}'
''.format(min(self.threshold, 1 - self.threshold),
self.margin))
return self
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by the label of
classes.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
Returns:
numpy.ndarray: Returns the probability of the sample for each class
in the model, where classes are ordered as they are in
``self.classes_``.
"""
check_is_fitted(self, 'pos_label_')
groups, _ = check_groups(X, self.prot_attr_)
if len(self.classes_) != X.shape[1]:
raise ValueError('X should contain one column per class. Got: {} '
'columns.'.format(X.shape[1]))
pos_idx = np.nonzero(self.classes_ == self.pos_label_)[0][0]
yt = X.iloc[:, pos_idx].to_numpy().copy()
# indices of critical region around the classification boundary
crit_above = (self.margin > yt-self.threshold) & (yt > self.threshold)
crit_below = (-self.margin < yt-self.threshold) & (yt < self.threshold)
# flip labels: priv + above -> below, unpriv + below -> above
priv = (groups == self.priv_group_)
flip = (priv & crit_above) | (~priv & crit_below)
yt[flip] = 2*self.threshold - yt[flip]
return np.c_[1 - yt, yt] if pos_idx == 1 else np.c_[yt, 1 - yt]
def predict(self, X):
"""Predict class labels for the given scores.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
Returns:
numpy.ndarray: Predicted class label per sample.
"""
scores = self.predict_proba(X)
pos_idx = np.nonzero(self.classes_ == self.pos_label_)[0][0]
y_pred = (scores[:, pos_idx] > self.threshold).astype(int)
return self.classes_[y_pred if pos_idx == 1 else 1 - y_pred]
def fit_predict(self, X, y=None, **fit_params):
"""Predict class labels for the given scores.
In general, it is not necessary to fit and predict separately so this
method may be used instead. For subsequent predicts, it may be easier
to use the `predict` method, though.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
y (array-like, optional): Ground-truth (correct) target values.
Note: if not provided, `labels` must be provided in
`**fit_params`. See `fit` for details.
**fit_params: See `fit` for details.
Returns:
numpy.ndarray: Predicted class label per sample.
"""
return self.fit(X, y, **fit_params).predict(X)
class RejectOptionClassifierCV(GridSearchCV):
"""Wrapper for running a grid search over threshold, margin combinations for
a RejectOptionClassifier.
Note:
:class:`~sklearn.model_selection.GridSearchCV` does not currently
support sample weights in scoring. This will work but throw a warning if
`sample_weight` is provided.
See also:
:class:`RejectOptionClassifier`
Examples:
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from sklearn.linear_model import LogisticRegression
>>> from aif360.sklearn.datasets import fetch_german
>>> from aif360.sklearn.postprocessing import RejectOptionClassifierCV
>>> X, y = fetch_german(numeric_only=True)
>>> lr = LogisticRegression(solver='lbfgs').fit(X, y)
>>> roc = RejectOptionClassifierCV('sex', scoring='disparate_impact')
>>> roc.fit(pd.DataFrame(lr.predict_proba(X), index=X.index), y)
We can also achieve this more simply using a PostProcessingMeta
estimator:
>>> from aif360.sklearn.postprocessing import PostProcessingMeta
>>> pp = PostProcessingMeta(lr, roc).fit(X, y)
"""
def __init__(self, prot_attr=None, *, scoring, step=0.05, refit=True, **kwargs):
"""
Args:
prot_attr (single label or list-like, optional): Protected
attribute(s) to use in the post-processing. If more than one
attribute, all combinations of values (intersections) are
considered. Default is ``None`` meaning all protected attributes
from the dataset are used. Note: This algorithm requires there
be exactly 2 groups (privileged and unprivileged).
scoring ('statistical_parity', 'average_odds', 'equal_opportunity',
'disparate_impact', or callable/dict): Fairness scorer to use to
evaluate the predictions. If type is a `str`, constructs the
corresponding scorer for that metric in addition to the default
balanced accuracy. If type is callable (i.e., a scorer object),
that will be used along with balanced accuracy. Finally, if an
explicit dictionary is passed, this will be used as is.
step (float): Step size for grid search. Will search every valid
combination of threshold and margin that are multiples of this
step size. See `param_grid` after fitting for the exact search
space.
refit (bool or callable, optional): Refit the estimator using the
best parameters found. If `True` and not using a custom scoring
function, this chooses the highest balanced accuracy given
fairness score > -0.1 (or > 0.8 for disparate impact only).
Alternatively, a custom refitting function may be passed. See
:class:`~sklearn.model_selection.GridSearchCV` for details.
**kwargs: See :class:`~sklearn.model_selection.GridSearchCV` for
additional kwargs.
"""
self.scoring = scoring
self.refit = refit
self.step = step
self.prot_attr = prot_attr
super().__init__(RejectOptionClassifier(), {}, scoring=scoring,
refit=refit, **kwargs)
def _more_tags(self):
return {'requires_proba': True}
def fit(self, X, y, **fit_params):
"""Run fit with all sets of parameters.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
y (pandas.Series): Ground-truth (correct) target values.
**fit_params: Parameters passed to the ``fit()`` method.
Returns:
self
"""
self.param_grid = []
thresholds = np.arange(self.step, 1, self.step)
# arange has numerical instabilities. this way guarantees margin <= threshold
for i, t in enumerate(thresholds):
n = min(i+1, len(thresholds)-i)
margins = np.linspace(min(self.step, min(t, 1-t)), min(t, 1-t), n)
self.param_grid.append({'prot_attr': [self.prot_attr],
'threshold': [t], 'margin': margins})
if fit_params.get('sample_weight', None) is not None:
warnings.warn('sample_weight will be ignored when scoring.',
RuntimeWarning)
if not isinstance(self.scoring, dict):
# TODO: sample_weight scoring workaround
self.scorer_name_ = self.scoring
if self.scoring == 'statistical_parity':
self.scorer_ = make_scorer(statistical_parity_difference,
prot_attr=self.prot_attr)
elif self.scoring == 'average_odds':
self.scorer_ = make_scorer(average_odds_error,
prot_attr=self.prot_attr)
elif self.scoring == 'equal_opportunity':
self.scorer_ = make_scorer(equal_opportunity_difference,
prot_attr=self.prot_attr)
elif self.scoring == 'disparate_impact':
self.scorer_ = make_scorer(disparate_impact_ratio, is_ratio=True,
prot_attr=self.prot_attr, zero_division=0)
elif not callable(self.scoring):
raise ValueError("scorer must be one of: 'statistical_parity', "
"'average_odds', 'equal_opportunity', 'disparate_impact' "
"or a callable function. Got:\n{}".format(self.scoring))
else:
self.scorer_name_ = 'fairness_metric'
self.scorer_ = self.scoring
self.scoring = {'bal_acc': 'balanced_accuracy',
self.scorer_name_: self.scorer_}
if self.refit is True and self.scorer_name_ != 'fairness_metric':
if self.scorer_name_ == 'disparate_impact':
self.refit = lambda res: np.ma.array(res['mean_test_bal_acc'],
mask=res['mean_test_disparate_impact'] < 0.8).argmax()
else:
self.refit = lambda res: np.ma.array(res['mean_test_bal_acc'],
mask=res['mean_test_'+self.scorer_name_] < -0.1).argmax()
class NoSplit:
def split(self, X, y=None, groups=None):
yield np.arange(len(X)), np.arange(len(X))
def get_n_splits(self, X=None, y=None, groups=None):
return 1
self.cv = NoSplit()
return super().fit(X, y, **fit_params)