File size: 19,742 Bytes
bb706ee
51e773e
 
 
 
 
 
 
 
 
 
d422d23
f22203e
7282961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb706ee
7282961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e773e
 
a9353c5
51e773e
 
d422d23
51e773e
 
 
 
 
 
 
 
a9353c5
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9353c5
 
51e773e
 
 
a9353c5
51e773e
 
a9353c5
51e773e
 
 
 
 
 
 
 
a9353c5
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9353c5
 
f22203e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e773e
 
bb706ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e773e
bb706ee
 
 
 
 
 
 
7282961
bb706ee
 
 
51e773e
 
 
7282961
51e773e
7282961
 
bb706ee
 
7282961
bb706ee
7282961
 
51e773e
7282961
 
 
 
 
 
 
 
51e773e
bb706ee
f22203e
7282961
 
bb706ee
 
7282961
bb706ee
7282961
51e773e
7282961
 
 
 
 
 
 
bb706ee
7282961
 
bb706ee
7282961
 
51e773e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// app.cpp - Modified version for command line arguments
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>

// Struct to hold cubic equation roots
struct CubicRoots {
    std::complex<double> root1;
    std::complex<double> root2;
    std::complex<double> root3;
};

// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
CubicRoots solveCubic(double a, double b, double c, double d) {
    // Handle special case for a == 0 (quadratic)
    if (std::abs(a) < 1e-14) {
        CubicRoots roots;
        // For a quadratic equation: bz^2 + cz + d = 0
        double discriminant = c * c - 4.0 * b * d;
        if (discriminant >= 0) {
            double sqrtDiscriminant = std::sqrt(discriminant);
            roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
            roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
            roots.root3 = std::complex<double>(1e99, 0.0); // Infinity for third root
        } else {
            double real = -c / (2.0 * b);
            double imag = std::sqrt(-discriminant) / (2.0 * b);
            roots.root1 = std::complex<double>(real, imag);
            roots.root2 = std::complex<double>(real, -imag);
            roots.root3 = std::complex<double>(1e99, 0.0); // Infinity for third root
        }
        return roots;
    }

    // Normalize equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
    double p = b / a;
    double q = c / a;
    double r = d / a;

    // Substitute z = t - p/3 to get t^3 + pt^2 + qt + r = 0
    double p1 = q - p * p / 3.0;
    double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;

    // Calculate discriminant
    double D = q1 * q1 / 4.0 + p1 * p1 * p1 / 27.0;

    // Precompute values
    const double two_pi = 2.0 * M_PI;
    const double third = 1.0 / 3.0;
    const double p_over_3 = p / 3.0;

    CubicRoots roots;

    if (D > 1e-10) { // One real root and two complex conjugate roots
        double sqrtD = std::sqrt(D);
        double u = std::cbrt(-q1 / 2.0 + sqrtD);
        double v = std::cbrt(-q1 / 2.0 - sqrtD);
        
        // Real root
        roots.root1 = std::complex<double>(u + v - p_over_3, 0.0);
        
        // Complex conjugate roots
        double real_part = -(u + v) / 2.0 - p_over_3;
        double imag_part = (u - v) * std::sqrt(3.0) / 2.0;
        roots.root2 = std::complex<double>(real_part, imag_part);
        roots.root3 = std::complex<double>(real_part, -imag_part);
    } 
    else if (D < -1e-10) { // Three distinct real roots
        double angle = std::acos(-q1 / 2.0 * std::sqrt(-27.0 / (p1 * p1 * p1)));
        double magnitude = 2.0 * std::sqrt(-p1 / 3.0);
        
        roots.root1 = std::complex<double>(magnitude * std::cos(angle / 3.0) - p_over_3, 0.0);
        roots.root2 = std::complex<double>(magnitude * std::cos((angle + two_pi) / 3.0) - p_over_3, 0.0);
        roots.root3 = std::complex<double>(magnitude * std::cos((angle + 2.0 * two_pi) / 3.0) - p_over_3, 0.0);
    } 
    else { // D β‰ˆ 0, at least two equal roots
        double u = std::cbrt(-q1 / 2.0);
        
        roots.root1 = std::complex<double>(2.0 * u - p_over_3, 0.0);
        roots.root2 = std::complex<double>(-u - p_over_3, 0.0);
        roots.root3 = roots.root2; // Duplicate root
    }

    return roots;
}

// Function to compute the cubic equation for Im(s) vs z
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points) {
    std::vector<double> z_values(num_points);
    std::vector<double> ims_values1(num_points);
    std::vector<double> ims_values2(num_points);
    std::vector<double> ims_values3(num_points);
    
    // Generate z values from 0 to 10 (or adjust range as needed)
    double z_start = 0.01;  // Avoid z=0 to prevent potential division issues
    double z_end = 10.0;
    double z_step = (z_end - z_start) / (num_points - 1);
    
    for (int i = 0; i < num_points; ++i) {
        double z = z_start + i * z_step;
        z_values[i] = z;
        
        // Coefficients for the cubic equation:
        // zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
        double coef_a = z * a;
        double coef_b = z * (a + 1) + a * (1 - y);
        double coef_c = z + (a + 1) - y - y * beta * (a - 1);
        double coef_d = 1.0;
        
        // Solve the cubic equation
        CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
        
        // Extract imaginary parts
        ims_values1[i] = std::abs(roots.root1.imag());
        ims_values2[i] = std::abs(roots.root2.imag());
        ims_values3[i] = std::abs(roots.root3.imag());
    }
    
    // Create output vector
    std::vector<std::vector<double>> result = {
        z_values, ims_values1, ims_values2, ims_values3
    };
    
    return result;
}

// Function to save Im(s) vs z data as JSON
void saveImSDataAsJSON(const std::string& filename, 
                      const std::vector<std::vector<double>>& data) {
    std::ofstream outfile(filename);
    
    if (!outfile.is_open()) {
        std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
        return;
    }
    
    // Start JSON object
    outfile << "{\n";
    
    // Write z values
    outfile << "  \"z_values\": [";
    for (size_t i = 0; i < data[0].size(); ++i) {
        outfile << data[0][i];
        if (i < data[0].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for first root
    outfile << "  \"ims_values1\": [";
    for (size_t i = 0; i < data[1].size(); ++i) {
        outfile << data[1][i];
        if (i < data[1].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for second root
    outfile << "  \"ims_values2\": [";
    for (size_t i = 0; i < data[2].size(); ++i) {
        outfile << data[2][i];
        if (i < data[2].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for third root
    outfile << "  \"ims_values3\": [";
    for (size_t i = 0; i < data[3].size(); ++i) {
        outfile << data[3][i];
        if (i < data[3].size() - 1) outfile << ", ";
    }
    outfile << "]\n";
    
    // Close JSON object
    outfile << "}\n";
    
    outfile.close();
}

// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double k) -> double {
        return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / 
               ((a * k + 1) * (k * k + k));
    };
    
    // Use numerical optimization to find the maximum
    // Grid search followed by golden section search
    double best_k = 1.0;
    double best_val = f(best_k);
    
    // Initial grid search over a wide range
    const int num_grid_points = grid_points;
    for (int i = 0; i < num_grid_points; ++i) {
        double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
        double val = f(k);
        if (val > best_val) {
            best_val = val;
            best_k = k;
        }
    }
    
    // Refine with golden section search
    double a_gs = std::max(0.01, best_k / 10.0);
    double b_gs = best_k * 10.0;
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) > f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double t) -> double {
        return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / 
               ((a * t + 1) * (t * t + t));
    };
    
    // Use numerical optimization to find the minimum
    // Grid search followed by golden section search
    double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
    double best_val = f(best_t);
    
    // Initial grid search over the range (-1/a, 0)
    const int num_grid_points = grid_points;
    for (int i = 1; i < num_grid_points; ++i) {
        // From slightly above -1/a to slightly below 0
        double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
        if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
        
        double val = f(t);
        if (val < best_val) {
            best_val = val;
            best_t = t;
        }
    }
    
    // Refine with golden section search
    double a_gs = -0.999/a; // Slightly above -1/a
    double b_gs = -0.001/a; // Slightly below 0
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) < f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to save data as JSON
void save_as_json(const std::string& filename, 
                 const std::vector<double>& beta_values,
                 const std::vector<double>& max_eigenvalues,
                 const std::vector<double>& min_eigenvalues,
                 const std::vector<double>& theoretical_max_values,
                 const std::vector<double>& theoretical_min_values) {
    
    std::ofstream outfile(filename);
    
    if (!outfile.is_open()) {
        std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
        return;
    }
    
    // Start JSON object
    outfile << "{\n";
    
    // Write beta values
    outfile << "  \"beta_values\": [";
    for (size_t i = 0; i < beta_values.size(); ++i) {
        outfile << beta_values[i];
        if (i < beta_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write max eigenvalues
    outfile << "  \"max_eigenvalues\": [";
    for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
        outfile << max_eigenvalues[i];
        if (i < max_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write min eigenvalues
    outfile << "  \"min_eigenvalues\": [";
    for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
        outfile << min_eigenvalues[i];
        if (i < min_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical max values
    outfile << "  \"theoretical_max\": [";
    for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
        outfile << theoretical_max_values[i];
        if (i < theoretical_max_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical min values
    outfile << "  \"theoretical_min\": [";
    for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
        outfile << theoretical_min_values[i];
        if (i < theoretical_min_values.size() - 1) outfile << ", ";
    }
    outfile << "]\n";
    
    // Close JSON object
    outfile << "}\n";
    
    outfile.close();
}

// Eigenvalue analysis function
void eigenvalueAnalysis(int n, int p, double a, double y, int fineness, 
                      int theory_grid_points, double theory_tolerance, 
                      const std::string& output_file) {
    
    std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p 
              << ", a = " << a << ", y = " << y << ", fineness = " << fineness 
              << ", theory_grid_points = " << theory_grid_points
              << ", theory_tolerance = " << theory_tolerance << std::endl;
    std::cout << "Output will be saved to: " << output_file << std::endl;
    
    // ─── Beta range parameters ────────────────────────────────────────
    const int num_beta_points = fineness; // Controlled by fineness parameter
    std::vector<double> beta_values(num_beta_points);
    for (int i = 0; i < num_beta_points; ++i) {
        beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
    }
    
    // ─── Storage for results ────────────────────────────────────────
    std::vector<double> max_eigenvalues(num_beta_points);
    std::vector<double> min_eigenvalues(num_beta_points);
    std::vector<double> theoretical_max_values(num_beta_points);
    std::vector<double> theoretical_min_values(num_beta_points);
    
    // ─── Random‐Gaussian X and S_n ────────────────────────────────
    std::mt19937_64 rng{std::random_device{}()};
    std::normal_distribution<double> norm(0.0, 1.0);
    
    cv::Mat X(p, n, CV_64F);
    for(int i = 0; i < p; ++i)
        for(int j = 0; j < n; ++j)
            X.at<double>(i,j) = norm(rng);
    
    // ─── Process each beta value ─────────────────────────────────
    for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
        double beta = beta_values[beta_idx];
        
        // Compute theoretical values with customizable precision
        theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
        theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
        
        // ─── Build T_n matrix ──────────────────────────────────
        int k = static_cast<int>(std::floor(beta * p));
        std::vector<double> diags(p, 1.0);
        std::fill_n(diags.begin(), k, a);
        std::shuffle(diags.begin(), diags.end(), rng);
        
        cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
        for(int i = 0; i < p; ++i){
            T_n.at<double>(i,i) = diags[i];
        }
        
        // ─── Form B_n = (1/n) * X * T_n * X^T ────────────
        cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
        
        // ─── Compute eigenvalues of B ────────────────────────────
        cv::Mat eigVals;
        cv::eigen(B, eigVals);
        std::vector<double> eigs(n);  
        for(int i = 0; i < n; ++i)
            eigs[i] = eigVals.at<double>(i, 0);
        
        max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
        min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
        
        // Progress indicator for Streamlit
        double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
        std::cout << "PROGRESS:" << progress << std::endl;
        
        // Less verbose output for Streamlit
        if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
            std::cout << "Processing beta = " << beta 
                    << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
        }
    }
    
    // Save data as JSON for Python to read
    save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, 
                theoretical_max_values, theoretical_min_values);
    
    std::cout << "Data saved to " << output_file << std::endl;
}

// Cubic equation analysis function
void cubicAnalysis(double a, double y, double beta, int num_points, const std::string& output_file) {
    std::cout << "Running cubic equation analysis with parameters: a = " << a 
              << ", y = " << y << ", beta = " << beta << ", num_points = " << num_points << std::endl;
    std::cout << "Output will be saved to: " << output_file << std::endl;
    
    // Compute Im(s) vs z data
    std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points);
    
    // Save to JSON
    saveImSDataAsJSON(output_file, ims_data);
    
    std::cout << "Cubic equation data saved to " << output_file << std::endl;
}

int main(int argc, char* argv[]) {
    // Print received arguments for debugging
    std::cout << "Received " << argc << " arguments:" << std::endl;
    for (int i = 0; i < argc; ++i) {
        std::cout << "  argv[" << i << "]: " << argv[i] << std::endl;
    }
    
    // Check for mode argument
    if (argc < 2) {
        std::cerr << "Error: Missing mode argument." << std::endl;
        std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
        std::cerr << "   or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <output_file>" << std::endl;
        return 1;
    }
    
    std::string mode = argv[1];
    
    if (mode == "eigenvalues") {
        // ─── Eigenvalue analysis mode ───────────────────────────────────────────
        if (argc != 10) {
            std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
            std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
            std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
            return 1;
        }
        
        int n = std::stoi(argv[2]);
        int p = std::stoi(argv[3]);
        double a = std::stod(argv[4]);
        double y = std::stod(argv[5]);
        int fineness = std::stoi(argv[6]);
        int theory_grid_points = std::stoi(argv[7]);
        double theory_tolerance = std::stod(argv[8]);
        std::string output_file = argv[9];
        
        eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file);
        
    } else if (mode == "cubic") {
        // ─── Cubic equation analysis mode ───────────────────────────────────────────
        if (argc != 7) {
            std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
            std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <output_file>" << std::endl;
            std::cerr << "Received " << argc << " arguments, expected 7." << std::endl;
            return 1;
        }
        
        double a = std::stod(argv[2]);
        double y = std::stod(argv[3]);
        double beta = std::stod(argv[4]);
        int num_points = std::stoi(argv[5]);
        std::string output_file = argv[6];
        
        cubicAnalysis(a, y, beta, num_points, output_file);
        
    } else {
        std::cerr << "Error: Unknown mode: " << mode << std::endl;
        std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
        return 1;
    }
    
    return 0;
}