Spaces:
Building
Building
File size: 23,864 Bytes
dd5ca7d a76f82e 319d05d dd5ca7d 80ed07e 19ef319 80ed07e c02def7 dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 913575d dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 2690664 19ef319 913575d dd5ca7d 2690664 19ef319 7a1ddff 0357330 7bda4fb 19ef319 913575d 6333e73 7834b48 6333e73 dd5ca7d 19ef319 913575d c02def7 0357330 7a1ddff c02def7 19ef319 c02def7 19ef319 df770a8 c02def7 3c11a35 f1f1cff c02def7 df770a8 3c11a35 c02def7 99f6a90 f1f1cff 3c11a35 f1f1cff 3c11a35 5be6912 f1f1cff 7a1ddff f1f1cff c02def7 19ef319 0357330 19ef319 c02def7 df770a8 c02def7 3be6fe9 c02def7 7a1ddff c02def7 3be6fe9 19ef319 3be6fe9 0357330 3be6fe9 c02def7 3be6fe9 c02def7 0357330 c02def7 3be6fe9 19ef319 7a1ddff dd5ca7d 19ef319 913575d 2690664 19ef319 7a1ddff 0357330 7a1ddff 0357330 7a1ddff 319d05d 0357330 319d05d 0357330 7a1ddff 0357330 7a1ddff 0357330 319d05d 0357330 319d05d 0357330 7a1ddff 0357330 7a1ddff 0357330 319d05d 7a1ddff 0357330 319d05d 7a1ddff 0357330 7a1ddff 19ef319 dd5ca7d 0357330 7a1ddff dd5ca7d 19ef319 dd5ca7d ba9a480 3e42471 1a4a7a6 df770a8 c02def7 3c11a35 c02def7 3c11a35 a12ae05 df770a8 c02def7 19ef319 ba9a480 19ef319 c02def7 19ef319 c02def7 19ef319 0357330 dd5ca7d 0357330 b7ef8c3 1a4a7a6 3e42471 1a4a7a6 0357330 ba9a480 2690664 ef6361a 0357330 a76f82e c02def7 913575d 19ef319 3e42471 1a4a7a6 c02def7 19ef319 da34afc c02def7 da34afc c02def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
def add_sqrt_support(expr_str):
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
return expr_str.replace('sqrt(', 'sp.sqrt(')
#############################
# 1) Define the discriminant
#############################
# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Scan z in [z_min, z_max] for sign changes in the discriminant,
and return approximated roots (where the discriminant is zero).
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1 * f2 < 0:
zl, zr = z_grid[i], z_grid[i+1]
for _ in range(50):
mid = 0.5 * (zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl, f1 = mid, fm
else:
zr, f2 = mid, fm
roots_found.append(0.5 * (zl + zr))
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
for which the discriminant is zero.
Returns: betas, lower z*(β) values, and upper z*(β) values.
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
# Removed the compute_low_y_curve function
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the "High y Expression" curve.
"""
a = z_a
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
return numerator/denominator
def compute_alternate_low_expr(betas, z_a, y):
"""
Compute the alternate low expression:
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
"""
betas = np.array(betas)
return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a)
@st.cache_data
def compute_derivatives(curve, betas):
"""Compute first and second derivatives of a curve"""
d1 = np.gradient(curve, betas)
d2 = np.gradient(d1, betas)
return d1, d2
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
"""Compute derivatives for all curves"""
derivatives = {}
# Upper z*(β)
derivatives['upper'] = compute_derivatives(z_maxs, betas)
# Lower z*(β)
derivatives['lower'] = compute_derivatives(z_mins, betas)
# Low y Expression (only if provided)
if low_y_curve is not None:
derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
# High y Expression
derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
# Alternate Low Expression
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
# Custom Expression 1 (if provided)
if custom_curve1 is not None:
derivatives['custom1'] = compute_derivatives(custom_curve1, betas)
# Custom Expression 2 (if provided)
if custom_curve2 is not None:
derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
return derivatives
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
"""
Compute custom curve. If is_s_based=True, compute using s substitution.
Otherwise, compute direct z(β) expression.
"""
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
try:
# Add sqrt support
s_num_expr = add_sqrt_support(s_num_expr)
s_denom_expr = add_sqrt_support(s_denom_expr)
num_expr = sp.sympify(s_num_expr, locals=local_dict)
denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
if is_s_based:
# Compute s and substitute into main expression
s_expr = num_expr / denom_expr
a = z_a_sym
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
final_expr = numerator/denominator
else:
# Direct z(β) expression
final_expr = num_expr / denom_expr
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = final_func(betas, z_a, y)
if np.isscalar(result):
result = np.full_like(betas, result)
return result
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
s_num_expr=None, s_denom_expr=None,
z_num_expr=None, z_denom_expr=None,
show_derivatives=False):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
# Removed low_y_curve computation
high_y_curve = compute_high_y_curve(betas, z_a, y)
alt_low_expr = compute_alternate_low_expr(betas, z_a, y)
# Compute both custom curves
custom_curve1 = None
custom_curve2 = None
if s_num_expr and s_denom_expr:
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
if z_num_expr and z_denom_expr:
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)
# Compute derivatives if needed
if show_derivatives:
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve,
alt_low_expr, custom_curve1, custom_curve2)
fig = go.Figure()
# Original curves
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper z*(β)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower z*(β)", line=dict(color='lightblue')))
# Removed the Low y Expression trace
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
name="High y Expression", line=dict(color='green')))
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
name="Alternate Low Expression", line=dict(color='orange')))
if custom_curve1 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
name="Custom 1 (s-based)", line=dict(color='purple')))
if custom_curve2 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
name="Custom 2 (direct)", line=dict(color='magenta')))
if show_derivatives:
# First derivatives
curve_info = [
('upper', 'Upper z*(β)', 'blue'),
('lower', 'Lower z*(β)', 'lightblue'),
# Removed low_y curve
('high_y', 'High y', 'green'),
('alt_low', 'Alt Low', 'orange')
]
if custom_curve1 is not None:
curve_info.append(('custom1', 'Custom 1', 'purple'))
if custom_curve2 is not None:
curve_info.append(('custom2', 'Custom 2', 'magenta'))
for key, name, color in curve_info:
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines",
name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines",
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
fig.update_layout(
title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""
Generate Im(s) and Re(s) vs. z plots.
"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims, res = [], []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
return fig_im, fig_re
@st.cache_data
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
"""
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
Parameters:
-----------
beta : float
Fraction of components equal to z_a
y : float
Aspect ratio p/n
z_a : float
Value for the delta mass at z_a
n : int
Number of samples
seed : int
Random seed for reproducibility
"""
# Set random seed
np.random.seed(seed)
# Compute dimension p based on aspect ratio y
p = int(y * n)
# Constructing T_n (Population / Shape Matrix)
T_diag = np.where(np.random.rand(p) < beta, z_a, 1.0)
T_n = np.diag(T_diag)
# Generate the data matrix X with i.i.d. standard normal entries
X = np.random.randn(p, n)
# Compute the sample covariance matrix S_n = (1/n) * XX^T
S_n = (1 / n) * (X @ X.T)
# Compute B_n = S_n T_n
B_n = S_n @ T_n
# Compute eigenvalues of B_n
eigenvalues = np.linalg.eigvalsh(B_n)
# Use KDE to compute a smooth density estimate
kde = gaussian_kde(eigenvalues)
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
kde_vals = kde(x_vals)
# Create figure
fig = go.Figure()
# Add histogram trace
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
name="Histogram", marker=dict(color='blue', opacity=0.6)))
# Add KDE trace
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
name="KDE", line=dict(color='red', width=2)))
fig.update_layout(
title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
xaxis_title="Eigenvalue",
yaxis_title="Density",
hovermode="closest",
showlegend=True
)
return fig
# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")
# Define three tabs (removed "Curve Intersections")
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"])
# ----- Tab 1: z*(β) Curves -----
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with st.expander("Resolution Settings"):
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps")
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps")
st.subheader("Custom Expression 1 (s-based)")
st.markdown("""Enter expressions for s = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
st.latex(r"\text{This s will be inserted into:}")
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
s_num = st.text_input("s numerator", value="y*beta*(z_a-1)", key="s_num")
s_denom = st.text_input("s denominator", value="z_a", key="s_denom")
st.subheader("Custom Expression 2 (direct z(β))")
st.markdown("""Enter direct expression for z(β) = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
z_num = st.text_input("z(β) numerator", value="y*beta*(z_a-1)", key="z_num")
z_denom = st.text_input("z(β) denominator", value="1", key="z_denom")
show_derivatives = st.checkbox("Show derivatives", value=False)
if st.button("Compute z vs. β Curves", key="tab1_button"):
with col2:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
s_num, s_denom, z_num, z_denom, show_derivatives)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Curve Explanations")
st.markdown("""
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Alternate Low Expression** (Orange): Alternative asymptotic expression
- **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Magenta): Direct z(β) expression
""")
if show_derivatives:
st.markdown("""
Derivatives are shown as:
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""")
# ----- Tab 2: Im{s} vs. z -----
with tab2:
st.header("Plot Complex Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
y_2 = st.number_input("y", value=1.0, key="y_tab2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
with st.expander("Resolution Settings"):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
if st.button("Compute Complex Roots vs. z", key="tab2_button"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
# Add a separator
st.markdown("---")
# Add eigenvalue distribution section
st.header("Eigenvalue Distribution for B_n = S_n T_n")
st.markdown("""
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
- B_n = (1/n)XX* with X being a p×n matrix
- p/n → y as n→∞
- All elements of X are i.i.d with distribution β·δ(z_a) + (1-β)·δ(1)
""")
col_eigen1, col_eigen2 = st.columns([1, 2])
with col_eigen1:
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
with col_eigen2:
fig_eigen = generate_eigenvalue_distribution(beta, y_2, z_a_2, n=n_samples, seed=sim_seed)
if fig_eigen is not None:
st.plotly_chart(fig_eigen, use_container_width=True)
# ----- Tab 3: Differential Analysis -----
with tab3:
st.header("Differential Analysis vs. β")
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
col1, col2 = st.columns([1, 2])
with col1:
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
y_diff = st.number_input("y", value=1.0, key="y_diff")
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
with st.expander("Resolution Settings"):
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff")
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff")
# Add options for curve selection
st.subheader("Curves to Analyze")
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
analyze_high_y = st.checkbox("High y Expression", value=False)
analyze_alt_low = st.checkbox("Alternate Low Expression", value=False)
if st.button("Compute Differentials", key="tab3_button"):
with col2:
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
# Create figure
fig_diff = go.Figure()
if analyze_upper_lower:
diff_curve = upper_vals - lower_vals
d1 = np.gradient(diff_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
if analyze_high_y:
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(high_y_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
name="High y", line=dict(color="green", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="High y d/dβ", line=dict(color="green", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="High y d²/dβ²", line=dict(color="green", dash='dot')))
if analyze_alt_low:
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(alt_low_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
name="Alt Low", line=dict(color="orange", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Alt Low d/dβ", line=dict(color="orange", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot')))
fig_diff.update_layout(
title="Differential Analysis vs. β",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
st.plotly_chart(fig_diff, use_container_width=True)
st.markdown("""
### Curve Types
- Solid lines: Original curves
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""") |