Spaces:
Running
Running
File size: 31,068 Bytes
7fa25f7 efb47b3 a566db2 a2d2271 efb47b3 a566db2 efb47b3 a566db2 a2d2271 a566db2 efb47b3 a2d2271 eb8c873 efb47b3 a2d2271 eb8c873 efb47b3 a566db2 a2d2271 eb8c873 a2d2271 eb8c873 a2d2271 efb47b3 a566db2 eb8c873 a566db2 eb8c873 a566db2 a2d2271 efb47b3 eb8c873 a566db2 eb8c873 efb47b3 a2d2271 eb8c873 a2d2271 eb8c873 a566db2 eb8c873 a2d2271 eb8c873 a566db2 eb8c873 a566db2 a2d2271 eb8c873 a566db2 eb8c873 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 eb8c873 efb47b3 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 eb8c873 a566db2 eb8c873 7fa25f7 eb8c873 7fa25f7 eb8c873 7fa25f7 eb8c873 7fa25f7 eb8c873 7fa25f7 eb8c873 7fa25f7 eb8c873 a566db2 a2d2271 a566db2 a2d2271 a566db2 912d5b8 a2d2271 a566db2 a2d2271 a566db2 912d5b8 09a0f4d a566db2 09a0f4d a566db2 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 a566db2 a2d2271 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 a566db2 912d5b8 09a0f4d 912d5b8 a566db2 912d5b8 a566db2 912d5b8 a566db2 a2d2271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp
# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
# Color map for typhoon categories
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
'C2 Typhoon': 'rgb(255, 191, 0)',
'C1 Typhoon': 'rgb(255, 255, 0)',
'Tropical Storm': 'rgb(0, 255, 255)',
'Tropical Depression': 'rgb(173, 216, 230)'
}
# Classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
# Data loading and preprocessing functions
def download_oni_file(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_ibtracs_data():
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
next(infile); next(infile) # Skip header lines
reader = csv.reader(infile)
sid_data = defaultdict(list)
for row in reader:
if row:
sid = row[0]
sid_data[sid].append((row, row[6]))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date, 'END_DATE': end_date
})
def load_data(oni_path, typhoon_path):
oni_data = pd.read_csv(oni_path)
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
return oni_data, typhoon_data
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
'LAT': 'first', 'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed # Assuming input is already in knots
if wind_speed_kt >= 137:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83:
return 'C2 Typhoon'
elif wind_speed_kt >= 64:
return 'C1 Typhoon'
elif wind_speed_kt >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Main analysis functions
def generate_typhoon_tracks(filtered_data, typhoon_search):
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(title='Typhoon Tracks', geo=dict(projection_type='natural earth', showland=True))
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_regression_analysis(filtered_data):
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1, 1)
y = filtered_data['ONI']
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
# Path animation function
def generate_path_animation(year, typhoon, standard):
typhoon_id = typhoon.split('(')[-1].strip(')')
storm = ibtracs.get_storm(typhoon_id)
fig = go.Figure()
fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray')))
fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers',
marker=dict(size=10, color='green', symbol='star'), name='Start'))
frames = [
go.Frame(data=[
go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue')),
go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers',
marker=dict(size=10, color=categorize_typhoon_by_standard(storm.vmax[i], standard)[1]))
], name=f"frame{i}") for i in range(len(storm.time))
]
fig.frames = frames
fig.update_layout(
title=f"{year} {storm.name} Typhoon Path",
geo=dict(projection_type='natural earth', showland=True),
updatemenus=[{"buttons": [{"label": "Play", "method": "animate", "args": [None, {"frame": {"duration": 100}}]},
{"label": "Pause", "method": "animate", "args": [[None], {"mode": "immediate"}]}]}]
)
return fig
def categorize_typhoon_by_standard(wind_speed, standard):
if standard == 'taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
data['western_typhoon'] = (data['LON'] <= 140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
# Gradio interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase
- **Statistical Analysis**: Examine relationships between ONI values and typhoon characteristics
- **Path Animation**: Watch animated typhoon paths with intensity classification
- **Regression Analysis**: Perform statistical regression on typhoon data
Select a tab above to begin your analysis.
""")
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks")
# Fixed function that extracts only the first return value
def get_tracks_plot(*args):
results = generate_main_analysis(*args)
return results[0]
analyze_btn.click(
fn=get_tracks_plot,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=tracks_plot
)
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
# Fixed function for wind analysis
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
wind_analyze_btn.click(
fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results]
)
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
# Fixed function for pressure analysis
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
pressure_analyze_btn.click(
fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results]
)
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
# Fixed function for longitude analysis
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
lon_analyze_btn.click(
fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results]
)
with gr.Tab("Typhoon Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
typhoon_dropdown = gr.Dropdown(label="Typhoon")
standard_dropdown = gr.Dropdown(label="Classification Standard",
choices=['atlantic', 'taiwan'], value='atlantic')
# Fix the animation with improved function
def generate_fixed_path_animation(year, typhoon, standard):
if not typhoon:
return None
typhoon_id = typhoon.split('(')[-1].strip(')')
storm = ibtracs.get_storm(typhoon_id)
# Create better frames for animation
frames = []
for i in range(len(storm.time)):
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
frames.append(
go.Frame(
data=[
go.Scattergeo(
lon=storm.lon[:i+1], lat=storm.lat[:i+1],
mode='lines', line=dict(width=2, color='blue'),
name="Path"
),
go.Scattergeo(
lon=[storm.lon[i]], lat=[storm.lat[i]],
mode='markers',
marker=dict(size=10, color=color),
name=f"Position at {storm.time[i].strftime('%Y-%m-%d %H:%M')}",
text=f"Wind: {storm.vmax[i]} kt<br>Category: {category}"
)
],
name=f"frame{i}"
)
)
# Initial plot
fig = go.Figure(
data=[
go.Scattergeo(
lon=[storm.lon[0]], lat=[storm.lat[0]],
mode='markers', marker=dict(size=10, color='green'),
name="Start Position"
)
],
frames=frames
)
# Update layout with better animation controls
fig.update_layout(
title=f"{year} {storm.name} Typhoon Path",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(204, 204, 204)',
lataxis={'range': [min(storm.lat)-5, max(storm.lat)+5]},
lonaxis={'range': [min(storm.lon)-10, max(storm.lon)+10]}
),
updatemenus=[{
"buttons": [
{
"args": [None, {"frame": {"duration": 200, "redraw": True}, "fromcurrent": True, "mode": "immediate"}],
"label": "Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate"}],
"label": "Pause",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 10},
"type": "buttons",
"x": 0.1,
"y": 0
}],
sliders=[{
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"prefix": "Frame: "
},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{
"args": [[f.name], {
"frame": {"duration": 0, "redraw": True},
"mode": "immediate"
}],
"label": str(i),
"method": "animate"
} for i, f in enumerate(frames)
]
}]
)
return fig
animate_btn = gr.Button("Generate Animation")
path_plot = gr.Plot(label="Typhoon Path Animation")
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year and typhoon from the dropdowns
2. Click "Generate Animation"
3. Use the play button to start the animation
4. Use the slider to scrub through different positions
5. If animation doesn't play automatically, try using the slider to view frames
""")
# Year dropdown change function
def update_typhoon_options(year):
season = ibtracs.get_season(int(year))
storm_summary = season.summary()
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
return gr.update(choices=options, value=options[0] if options else None)
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
animate_btn.click(
fn=generate_fixed_path_animation,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=path_plot
)
demo.launch() |