Spaces:
Sleeping
Sleeping
File size: 65,055 Bytes
a60f1c0 6384d58 7fa25f7 efb47b3 4d9b5c3 a74a30d a566db2 84e165d 27f90be 16ed767 a60f1c0 84e165d 7513911 a60f1c0 57cb1ac a60f1c0 87de8af a60f1c0 eb8c873 7513911 473c7a8 7513911 473c7a8 eb8c873 473c7a8 efb47b3 87de8af e509f96 473c7a8 e509f96 bc15b27 efb47b3 a60f1c0 a2d2271 373b768 a2d2271 16ed767 a2d2271 16ed767 efb47b3 a60f1c0 611f47d 84e165d 8e5f90a 473c7a8 a60f1c0 473c7a8 eb8c873 473c7a8 eb8c873 473c7a8 eb8c873 a60f1c0 473c7a8 efb47b3 eb8c873 473c7a8 eb8c873 473c7a8 efb47b3 473c7a8 66c3b07 a7058dd 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 a7058dd 473c7a8 a7058dd 66c3b07 a7058dd 66c3b07 473c7a8 66c3b07 473c7a8 a7058dd 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 eb8c873 473c7a8 76771b5 5cfd2b7 76771b5 5cfd2b7 473c7a8 5cfd2b7 76771b5 5cfd2b7 76771b5 473c7a8 76771b5 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 5cfd2b7 473c7a8 5cfd2b7 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 76771b5 a566db2 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 eb8c873 473c7a8 eb8c873 a60f1c0 a2d2271 a60f1c0 eb8c873 473c7a8 66c3b07 eb8c873 473c7a8 a60f1c0 473c7a8 eb8c873 a60f1c0 eb8c873 473c7a8 66c3b07 eb8c873 473c7a8 a60f1c0 eb8c873 a2d2271 473c7a8 66c3b07 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 57cb1ac a2d2271 eb8c873 473c7a8 eb8c873 66c3b07 eb8c873 efb47b3 87de8af 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 a2d2271 87de8af 473c7a8 a566db2 473c7a8 a566db2 57cb1ac a60f1c0 a566db2 a2d2271 a566db2 4d9b5c3 a566db2 a2d2271 a566db2 473c7a8 a60f1c0 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a2d2271 a566db2 473c7a8 a60f1c0 a566db2 a60f1c0 a566db2 a60f1c0 a566db2 a2d2271 a566db2 473c7a8 a566db2 a60f1c0 a566db2 473c7a8 a566db2 a2d2271 a566db2 473c7a8 a2d2271 a60f1c0 a566db2 ce399c7 a566db2 e6b6548 473c7a8 e6b6548 a60f1c0 e6b6548 ce399c7 e6b6548 a60f1c0 66c3b07 57cb1ac 473c7a8 a60f1c0 e6b6548 87de8af a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 473c7a8 e6b6548 473c7a8 e6b6548 473c7a8 e6b6548 a60f1c0 473c7a8 66c3b07 a60f1c0 eb8c873 373b768 eb8c873 373b768 eb8c873 373b768 eb8c873 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 a2d2271 87de8af 473c7a8 87de8af 473c7a8 a60f1c0 473c7a8 a60f1c0 473c7a8 a60f1c0 66c3b07 a60f1c0 bc15b27 a60f1c0 87de8af a60f1c0 473c7a8 a60f1c0 473c7a8 ce399c7 473c7a8 a60f1c0 473c7a8 66c3b07 a60f1c0 ce399c7 a60f1c0 473c7a8 ce399c7 a60f1c0 473c7a8 a60f1c0 473c7a8 a60f1c0 473c7a8 ce399c7 473c7a8 ce399c7 473c7a8 ce399c7 473c7a8 a60f1c0 ce399c7 66c3b07 a60f1c0 473c7a8 ce399c7 66c3b07 ce399c7 66c3b07 ce399c7 473c7a8 ce399c7 66c3b07 ce399c7 473c7a8 87de8af a60f1c0 ce399c7 a60f1c0 66c3b07 ce399c7 473c7a8 a60f1c0 ce399c7 a60f1c0 473c7a8 ce399c7 a60f1c0 473c7a8 a60f1c0 473c7a8 a60f1c0 473c7a8 bc15b27 ce399c7 bc15b27 473c7a8 bc15b27 473c7a8 87de8af ce399c7 66c3b07 473c7a8 ce399c7 473c7a8 ce399c7 bc15b27 ce399c7 bc15b27 66c3b07 bc15b27 473c7a8 bc15b27 ce399c7 bc15b27 66c3b07 bc15b27 473c7a8 bc15b27 ce399c7 66c3b07 bc15b27 ce399c7 66c3b07 a60f1c0 473c7a8 a60f1c0 87de8af 473c7a8 87de8af 473c7a8 57cb1ac 473c7a8 57cb1ac a60f1c0 4d9b5c3 473c7a8 57cb1ac 473c7a8 57cb1ac 473c7a8 66c3b07 473c7a8 66c3b07 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac a60f1c0 87de8af 57cb1ac a60f1c0 57cb1ac a60f1c0 57cb1ac 4d9b5c3 a60f1c0 4d9b5c3 57cb1ac 66c3b07 57cb1ac 4d9b5c3 57cb1ac 87de8af a60f1c0 57cb1ac 4d9b5c3 473c7a8 15b9748 e6b6548 473c7a8 e6b6548 57cb1ac e6b6548 87de8af 473c7a8 87de8af 84e165d 473c7a8 57cb1ac 473c7a8 66c3b07 473c7a8 57cb1ac 473c7a8 57cb1ac 473c7a8 66c3b07 473c7a8 57cb1ac 473c7a8 57cb1ac 611f47d 473c7a8 87de8af 0b801f0 87de8af 473c7a8 0b801f0 a2d2271 a566db2 912d5b8 a60f1c0 912d5b8 a60f1c0 912d5b8 a60f1c0 473c7a8 8ef7489 912d5b8 a2d2271 8ef7489 a2d2271 8ef7489 a566db2 912d5b8 0b801f0 e28f12c a60f1c0 912d5b8 8ef7489 912d5b8 8ef7489 912d5b8 a60f1c0 912d5b8 8ef7489 912d5b8 8ef7489 912d5b8 a60f1c0 912d5b8 8ef7489 a60f1c0 8ef7489 09a0f4d 912d5b8 a60f1c0 a566db2 1f46770 912d5b8 8ef7489 fcd1f06 b7a2a27 8ef7489 bb0d660 0b801f0 912d5b8 473c7a8 57cb1ac 473c7a8 912d5b8 473c7a8 a60f1c0 8ef7489 16ed767 8ef7489 16ed767 8ef7489 16ed767 84e165d 16ed767 a60f1c0 a2d2271 0b801f0 473c7a8 a7058dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
try:
import cdsapi
CDSAPI_AVAILABLE = True
except ImportError:
CDSAPI_AVAILABLE = False
import tropycal.tracks as tracks
# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
# Enhanced data path handling for HuggingFace Spaces
if 'SPACE_ID' in os.environ:
# Running on HuggingFace Spaces
DATA_PATH = '/tmp/typhoon_data'
os.makedirs(DATA_PATH, exist_ok=True)
logging.info(f"Running on HuggingFace Spaces, using data path: {DATA_PATH}")
else:
# Local development
DATA_PATH = os.environ.get('DATA_PATH', tempfile.gettempdir())
# Ensure directory exists and is writable
try:
os.makedirs(DATA_PATH, exist_ok=True)
# Test write permissions
test_file = os.path.join(DATA_PATH, 'test_write.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
logging.warning(f"Data directory not writable, using temp dir: {e}")
DATA_PATH = tempfile.mkdtemp()
logging.info(f"Using temporary directory: {DATA_PATH}")
# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')
# IBTrACS settings
BASIN_FILES = {
'EP': 'ibtracs.EP.list.v04r01.csv',
'NA': 'ibtracs.NA.list.v04r01.csv',
'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1
# -----------------------------
# Color Maps and Standards
# -----------------------------
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# -----------------------------
# Season and Regions
# -----------------------------
season_months = {
'all': list(range(1, 13)),
'summer': [6, 7, 8],
'winter': [12, 1, 2]
}
regions = {
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}
# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------
def safe_file_write(file_path, data_frame, backup_dir=None):
"""Safely write DataFrame to CSV with backup and error handling"""
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Try to write to a temporary file first
temp_path = file_path + '.tmp'
data_frame.to_csv(temp_path, index=False)
# If successful, rename to final file
os.rename(temp_path, file_path)
logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
return True
except PermissionError as e:
logging.warning(f"Permission denied writing to {file_path}: {e}")
if backup_dir:
try:
backup_path = os.path.join(backup_dir, os.path.basename(file_path))
data_frame.to_csv(backup_path, index=False)
logging.info(f"Saved to backup location: {backup_path}")
return True
except Exception as backup_e:
logging.error(f"Failed to save to backup location: {backup_e}")
return False
except Exception as e:
logging.error(f"Error saving file {file_path}: {e}")
# Clean up temp file if it exists
if os.path.exists(temp_path):
try:
os.remove(temp_path)
except:
pass
return False
def get_fallback_data_dir():
"""Get a fallback data directory that's guaranteed to be writable"""
fallback_dirs = [
tempfile.gettempdir(),
'/tmp',
os.path.expanduser('~'),
os.getcwd()
]
for directory in fallback_dirs:
try:
test_dir = os.path.join(directory, 'typhoon_fallback')
os.makedirs(test_dir, exist_ok=True)
test_file = os.path.join(test_dir, 'test.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
return test_dir
except:
continue
# If all else fails, use current directory
return os.getcwd()
# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
"""Download ONI file with retry logic"""
max_retries = 3
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
except Exception as e:
logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
else:
logging.error(f"Failed to download ONI after {max_retries} attempts")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
"""Convert ONI ASCII format to CSV"""
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
try:
with open(input_file, 'r') as f:
lines = f.readlines()[1:] # Skip header
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year)-1)
data[year][month-1] = anom
# Write to CSV with safe write
df = pd.DataFrame(data).T.reset_index()
df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
df = df.sort_values('Year').reset_index(drop=True)
return safe_file_write(output_file, df, get_fallback_data_dir())
except Exception as e:
logging.error(f"Error converting ONI file: {e}")
return False
def update_oni_data():
"""Update ONI data with error handling"""
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
try:
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not os.path.exists(output_file):
os.rename(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
else:
# Create fallback ONI data if download fails
logging.warning("Creating fallback ONI data")
create_fallback_oni_data(output_file)
except Exception as e:
logging.error(f"Error updating ONI data: {e}")
create_fallback_oni_data(output_file)
def create_fallback_oni_data(output_file):
"""Create minimal ONI data for testing"""
years = range(2000, 2025)
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
# Create synthetic ONI data
data = []
for year in years:
row = [year]
for month in months:
# Generate some realistic ONI values
value = np.random.normal(0, 1) * 0.5
row.append(f"{value:.2f}")
data.append(row)
df = pd.DataFrame(data, columns=['Year'] + months)
safe_file_write(output_file, df, get_fallback_data_dir())
# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------
def download_ibtracs_file(basin, force_download=False):
"""Download specific basin file from IBTrACS"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
url = IBTRACS_BASE_URL + filename
# Check if file exists and is recent (less than 7 days old)
if os.path.exists(local_path) and not force_download:
file_age = time.time() - os.path.getmtime(local_path)
if file_age < 7 * 24 * 3600: # 7 days
logging.info(f"Using cached {basin} basin file")
return local_path
try:
logging.info(f"Downloading {basin} basin file from {url}")
response = requests.get(url, timeout=60)
response.raise_for_status()
# Ensure directory exists
os.makedirs(os.path.dirname(local_path), exist_ok=True)
with open(local_path, 'wb') as f:
f.write(response.content)
logging.info(f"Successfully downloaded {basin} basin file")
return local_path
except Exception as e:
logging.error(f"Failed to download {basin} basin file: {e}")
return None
def examine_ibtracs_structure(file_path):
"""Examine the actual structure of an IBTrACS CSV file"""
try:
with open(file_path, 'r') as f:
lines = f.readlines()
# Show first 5 lines
logging.info("First 5 lines of IBTrACS file:")
for i, line in enumerate(lines[:5]):
logging.info(f"Line {i}: {line.strip()}")
# The first line contains the actual column headers
# No need to skip rows for IBTrACS v04r01
df = pd.read_csv(file_path, nrows=5)
logging.info(f"Columns from first row: {list(df.columns)}")
return list(df.columns)
except Exception as e:
logging.error(f"Error examining IBTrACS structure: {e}")
return None
def load_ibtracs_csv_directly(basin='WP'):
"""Load IBTrACS data directly from CSV - FIXED VERSION"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
# Download if not exists
if not os.path.exists(local_path):
downloaded_path = download_ibtracs_file(basin)
if not downloaded_path:
return None
try:
# First, examine the structure
actual_columns = examine_ibtracs_structure(local_path)
if not actual_columns:
logging.error("Could not examine IBTrACS file structure")
return None
# Read IBTrACS CSV - DON'T skip any rows for v04r01
# The first row contains proper column headers
logging.info(f"Reading IBTrACS CSV file: {local_path}")
df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows
logging.info(f"Original columns: {list(df.columns)}")
logging.info(f"Data shape before cleaning: {df.shape}")
# Check which essential columns exist
required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
available_required = [col for col in required_cols if col in df.columns]
if len(available_required) < 2:
logging.error(f"Missing critical columns. Available: {list(df.columns)}")
return None
# Clean and standardize the data
if 'ISO_TIME' in df.columns:
df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], errors='coerce')
# Clean numeric columns
numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Filter out invalid/missing critical data
valid_rows = df['LAT'].notna() & df['LON'].notna()
df = df[valid_rows]
# Ensure LAT/LON are in reasonable ranges
df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
# Add basin info if missing
if 'BASIN' not in df.columns:
df['BASIN'] = basin
# Add default columns if missing
if 'NAME' not in df.columns:
df['NAME'] = 'UNNAMED'
if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
df['SEASON'] = df['ISO_TIME'].dt.year
logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
return df
except Exception as e:
logging.error(f"Error reading IBTrACS CSV file: {e}")
return None
def load_ibtracs_data_fixed():
"""Fixed version of IBTrACS data loading"""
ibtracs_data = {}
# Try to load each basin, but prioritize WP for this application
load_order = ['WP', 'EP', 'NA']
for basin in load_order:
try:
logging.info(f"Loading {basin} basin data...")
df = load_ibtracs_csv_directly(basin)
if df is not None and not df.empty:
ibtracs_data[basin] = df
logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
else:
logging.warning(f"No data loaded for basin {basin}")
ibtracs_data[basin] = None
except Exception as e:
logging.error(f"Failed to load basin {basin}: {e}")
ibtracs_data[basin] = None
return ibtracs_data
def load_data_fixed(oni_path, typhoon_path):
"""Fixed version of load_data function"""
# Load ONI data
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [],
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [],
'Oct': [], 'Nov': [], 'Dec': []})
if not os.path.exists(oni_path):
logging.warning(f"ONI data file not found: {oni_path}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
except Exception as e:
logging.error(f"Error loading ONI data: {e}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Still can't load ONI data: {e}")
# Load typhoon data - NEW APPROACH
typhoon_data = None
# First, try to load from existing processed file
if os.path.exists(typhoon_path):
try:
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
# Ensure basic columns exist and are valid
required_cols = ['LAT', 'LON']
if all(col in typhoon_data.columns for col in required_cols):
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
else:
logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
typhoon_data = None
except Exception as e:
logging.error(f"Error loading processed typhoon data: {e}")
typhoon_data = None
# If no valid processed data, load from IBTrACS
if typhoon_data is None or typhoon_data.empty:
logging.info("Loading typhoon data from IBTrACS...")
ibtracs_data = load_ibtracs_data_fixed()
# Combine all available basin data, prioritizing WP
combined_dfs = []
for basin in ['WP', 'EP', 'NA']:
if basin in ibtracs_data and ibtracs_data[basin] is not None:
df = ibtracs_data[basin].copy()
df['BASIN'] = basin
combined_dfs.append(df)
if combined_dfs:
typhoon_data = pd.concat(combined_dfs, ignore_index=True)
# Ensure SID has proper format
if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
# Create SID from basin and other identifiers if missing
if 'SEASON' in typhoon_data.columns:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
typhoon_data['SEASON'].astype(str))
else:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
'2000')
# Save the processed data for future use
safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
else:
logging.error("Failed to load any IBTrACS basin data")
# Create minimal fallback data
typhoon_data = create_fallback_typhoon_data()
# Final validation of typhoon data
if typhoon_data is not None:
# Ensure required columns exist with fallback values
required_columns = {
'SID': 'UNKNOWN',
'ISO_TIME': pd.Timestamp('2000-01-01'),
'LAT': 0.0,
'LON': 0.0,
'USA_WIND': np.nan,
'USA_PRES': np.nan,
'NAME': 'UNNAMED',
'SEASON': 2000
}
for col, default_val in required_columns.items():
if col not in typhoon_data.columns:
typhoon_data[col] = default_val
logging.warning(f"Added missing column {col} with default value")
# Ensure data types
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
# Remove rows with invalid coordinates
typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
return oni_data, typhoon_data
def create_fallback_typhoon_data():
"""Create minimal fallback typhoon data - FIXED VERSION"""
# Use proper pandas date_range instead of numpy
dates = pd.date_range(start='2000-01-01', end='2023-12-31', freq='D')
storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
data = []
for i, date in enumerate(storm_dates):
# Create realistic WP storm tracks
base_lat = np.random.uniform(10, 30)
base_lon = np.random.uniform(130, 160)
# Generate 20-50 data points per storm
track_length = np.random.randint(20, 51)
sid = f"WP{i+1:02d}{date.year}"
for j in range(track_length):
lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
wind = max(25, 70 + np.random.normal(0, 20))
pres = max(950, 1000 - wind + np.random.normal(0, 5))
data.append({
'SID': sid,
'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead
'NAME': f'FALLBACK_{i+1}',
'SEASON': date.year,
'LAT': lat,
'LON': lon,
'USA_WIND': wind,
'USA_PRES': pres,
'BASIN': 'WP'
})
df = pd.DataFrame(data)
logging.info(f"Created fallback typhoon data with {len(df)} records")
return df
def process_oni_data(oni_data):
"""Process ONI data into long format"""
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
"""Process typhoon data"""
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
'LAT':'first','LON':'first'
}).reset_index()
if 'ISO_TIME' in typhoon_max.columns:
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
else:
# Fallback if no ISO_TIME
typhoon_max['Month'] = '01'
typhoon_max['Year'] = typhoon_max['SEASON']
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
"""Merge ONI and typhoon data"""
return pd.merge(typhoon_max, oni_long, on=['Year','Month'])
def categorize_typhoon(wind_speed):
"""Categorize typhoon based on wind speed"""
if pd.isna(wind_speed):
return 'Tropical Depression'
if wind_speed >= 137:
return 'C5 Super Typhoon'
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed >= 96:
return 'C3 Strong Typhoon'
elif wind_speed >= 83:
return 'C2 Typhoon'
elif wind_speed >= 64:
return 'C1 Typhoon'
elif wind_speed >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
"""Classify ENSO phases based on ONI value"""
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if pd.isna(oni_value):
return 'Neutral'
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# -----------------------------
# Regression Functions
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
"""Perform wind regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Wind Regression Error: {e}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
"""Perform pressure regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Pressure Regression Error: {e}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
"""Perform longitude regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
data['western_typhoon'] = (data['LON']<=140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Longitude Regression Error: {e}"
# -----------------------------
# Visualization Functions
# -----------------------------
def generate_typhoon_tracks(filtered_data, typhoon_search):
"""Generate typhoon tracks visualization"""
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
phase = storm_data['ENSO_Phase'].iloc[0]
color = {'El Nino':'red','La Nina':'blue','Neutral':'green'}.get(phase, 'black')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(
title='Typhoon Tracks',
geo=dict(projection_type='natural earth', showland=True),
height=700
)
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
"""Generate wind vs ONI scatter plot"""
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME','Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
"""Generate pressure vs ONI scatter plot"""
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
hover_data=['NAME','Year','Category'],
title='Pressure vs ONI',
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_regression_analysis(filtered_data):
"""Generate regression analysis plot"""
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1,1)
y = filtered_data['ONI']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
except Exception as e:
slopes_text = f"Regression Error: {e}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Generate main analysis plots"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get full typhoon tracks"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID']==sid]
if storm_data.empty:
continue
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
basin = storm_data['SID'].iloc[0][:2]
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({basin})",
line=dict(width=1.5, color=color), hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID']==sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
line=dict(width=3, color='yellow'),
marker=dict(size=5), hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243,243,243)',
countrycolor='rgb(204,204,204)',
coastlinecolor='rgb(204,204,204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El Niño, Blue: La Nina, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get wind analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get pressure analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get longitude analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
"""Categorize typhoon by standard"""
if pd.isna(wind_speed):
return 'Tropical Depression', '#808080'
if standard=='taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']
# -----------------------------
# TSNE Cluster Function
# -----------------------------
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
"""Updated TSNE cluster function with mean curves"""
try:
# Merge raw typhoon data with ONI
raw_data = typhoon_data.copy()
if 'ISO_TIME' not in raw_data.columns:
logging.error("ISO_TIME column not found in typhoon data")
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "Error: ISO_TIME column missing"
raw_data['Year'] = raw_data['ISO_TIME'].dt.year
raw_data['Month'] = raw_data['ISO_TIME'].dt.strftime('%m')
merged_raw = pd.merge(raw_data, process_oni_data(oni_data), on=['Year','Month'], how='left')
# Filter by date
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
merged_raw = merged_raw[(merged_raw['ISO_TIME'] >= start_date) & (merged_raw['ISO_TIME'] <= end_date)]
logging.info(f"Total points after date filtering: {merged_raw.shape[0]}")
# Filter by ENSO phase if specified
merged_raw['ENSO_Phase'] = merged_raw['ONI'].apply(classify_enso_phases)
if enso_value != 'all':
merged_raw = merged_raw[merged_raw['ENSO_Phase'] == enso_value.capitalize()]
logging.info(f"Total points after ENSO filtering: {merged_raw.shape[0]}")
# Regional filtering for Western Pacific
wp_data = merged_raw[(merged_raw['LON'] >= 100) & (merged_raw['LON'] <= 180) &
(merged_raw['LAT'] >= 0) & (merged_raw['LAT'] <= 40)]
logging.info(f"Total points after WP regional filtering: {wp_data.shape[0]}")
if wp_data.empty:
logging.info("WP regional filter returned no data; using all filtered data.")
wp_data = merged_raw
# Group by storm ID
all_storms_data = []
for sid, group in wp_data.groupby('SID'):
group = group.sort_values('ISO_TIME')
times = pd.to_datetime(group['ISO_TIME']).values
lats = group['LAT'].astype(float).values
lons = group['LON'].astype(float).values
if len(lons) < 2:
continue
# Extract wind and pressure curves
wind = group['USA_WIND'].astype(float).values if 'USA_WIND' in group.columns else None
pres = group['USA_PRES'].astype(float).values if 'USA_PRES' in group.columns else None
all_storms_data.append((sid, lons, lats, times, wind, pres))
logging.info(f"Storms available for TSNE after grouping: {len(all_storms_data)}")
if not all_storms_data:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms for clustering."
# Interpolate each storm's route to a common length
max_length = min(50, max(len(item[1]) for item in all_storms_data)) # Cap at 50 points
route_vectors = []
wind_curves = []
pres_curves = []
storm_ids = []
for sid, lons, lats, times, wind, pres in all_storms_data:
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
try:
lon_interp = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
lat_interp = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Interpolation error for storm {sid}: {ex}")
continue
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
if np.isnan(route_vector).any():
continue
route_vectors.append(route_vector)
storm_ids.append(sid)
# Interpolate wind and pressure
if wind is not None and len(wind) >= 2:
try:
wind_interp = interp1d(t, wind, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Wind interpolation error for storm {sid}: {ex}")
wind_interp = np.full(max_length, np.nan)
else:
wind_interp = np.full(max_length, np.nan)
if pres is not None and len(pres) >= 2:
try:
pres_interp = interp1d(t, pres, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Pressure interpolation error for storm {sid}: {ex}")
pres_interp = np.full(max_length, np.nan)
else:
pres_interp = np.full(max_length, np.nan)
wind_curves.append(wind_interp)
pres_curves.append(pres_interp)
logging.info(f"Storms with valid route vectors: {len(route_vectors)}")
if len(route_vectors) == 0:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
route_vectors = np.array(route_vectors)
wind_curves = np.array(wind_curves)
pres_curves = np.array(pres_curves)
# Run TSNE on route vectors
if len(route_vectors) < 5:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "Need at least 5 storms for clustering."
tsne = TSNE(n_components=2, random_state=42, verbose=1, perplexity=min(30, len(route_vectors)-1))
tsne_results = tsne.fit_transform(route_vectors)
# Dynamic DBSCAN
selected_labels = None
selected_eps = None
for eps in np.linspace(1.0, 10.0, 91):
dbscan = DBSCAN(eps=eps, min_samples=max(2, len(route_vectors)//10))
labels = dbscan.fit_predict(tsne_results)
clusters = set(labels) - {-1}
if 2 <= len(clusters) <= min(10, len(route_vectors)//2):
selected_labels = labels
selected_eps = eps
break
if selected_labels is None:
selected_eps = 5.0
dbscan = DBSCAN(eps=selected_eps, min_samples=max(2, len(route_vectors)//10))
selected_labels = dbscan.fit_predict(tsne_results)
logging.info(f"Selected DBSCAN eps: {selected_eps:.2f} yielding {len(set(selected_labels)-{-1})} clusters.")
# TSNE scatter plot
fig_tsne = go.Figure()
colors = px.colors.qualitative.Set3
unique_labels = sorted(set(selected_labels) - {-1})
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
fig_tsne.add_trace(go.Scatter(
x=tsne_results[indices, 0],
y=tsne_results[indices, 1],
mode='markers',
marker=dict(color=colors[i % len(colors)]),
name=f"Cluster {label}"
))
noise_indices = np.where(selected_labels == -1)[0]
if len(noise_indices) > 0:
fig_tsne.add_trace(go.Scatter(
x=tsne_results[noise_indices, 0],
y=tsne_results[noise_indices, 1],
mode='markers',
marker=dict(color='grey'),
name='Noise'
))
fig_tsne.update_layout(
title="t-SNE of Storm Routes",
xaxis_title="t-SNE Dim 1",
yaxis_title="t-SNE Dim 2"
)
# Compute mean routes and curves for each cluster
fig_routes = go.Figure()
cluster_stats = []
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
cluster_ids = [storm_ids[j] for j in indices]
cluster_vectors = route_vectors[indices, :]
mean_vector = np.mean(cluster_vectors, axis=0)
mean_route = mean_vector.reshape((max_length, 2))
mean_lon = mean_route[:, 0]
mean_lat = mean_route[:, 1]
fig_routes.add_trace(go.Scattergeo(
lon=mean_lon,
lat=mean_lat,
mode='lines',
line=dict(width=4, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Route"
))
# Compute mean curves
cluster_winds = wind_curves[indices, :]
cluster_pres = pres_curves[indices, :]
mean_wind_curve = np.nanmean(cluster_winds, axis=0)
mean_pres_curve = np.nanmean(cluster_pres, axis=0)
cluster_stats.append((label, mean_wind_curve, mean_pres_curve))
fig_routes.update_layout(
title="Cluster Mean Routes",
geo=dict(projection_type='natural earth', showland=True),
height=600
)
# Create cluster stats plot
x_axis = np.linspace(0, 1, max_length)
fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True,
subplot_titles=("Mean Wind Speed (knots)", "Mean MSLP (hPa)"))
for i, (label, wind_curve, pres_curve) in enumerate(cluster_stats):
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=wind_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Wind",
showlegend=True
), row=1, col=1)
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=pres_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean MSLP",
showlegend=False
), row=2, col=1)
fig_stats.update_layout(
title="Cluster Mean Curves",
xaxis_title="Normalized Route Index",
yaxis_title="Mean Wind Speed (knots)",
xaxis2_title="Normalized Route Index",
yaxis2_title="Mean MSLP (hPa)",
height=600
)
info = f"TSNE clustering complete. Selected eps: {selected_eps:.2f}. Clusters: {len(unique_labels)}. Total storms: {len(route_vectors)}."
return fig_tsne, fig_routes, fig_stats, info
except Exception as e:
logging.error(f"Error in TSNE clustering: {e}")
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), f"Error in TSNE clustering: {e}"
# -----------------------------
# Animation Functions
# -----------------------------
def generate_track_video_from_csv(year, storm_id, standard):
"""Generate track video from CSV data"""
storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy()
if storm_df.empty:
logging.error(f"No data found for storm: {storm_id}")
return None
storm_df = storm_df.sort_values('ISO_TIME')
lats = storm_df['LAT'].astype(float).values
lons = storm_df['LON'].astype(float).values
times = pd.to_datetime(storm_df['ISO_TIME']).values
if 'USA_WIND' in storm_df.columns:
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values
else:
winds = np.full(len(lats), np.nan)
storm_name = storm_df['NAME'].iloc[0] if pd.notnull(storm_df['NAME'].iloc[0]) else "Unnamed"
basin = storm_df['SID'].iloc[0][:2]
season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
min_lat, max_lat = np.min(lats), np.max(lats)
min_lon, max_lon = np.min(lons), np.max(lons)
lat_padding = max((max_lat - min_lat)*0.3, 5)
lon_padding = max((max_lon - min_lon)*0.3, 5)
fig = plt.figure(figsize=(12,6), dpi=100)
ax = plt.axes([0.05, 0.05, 0.60, 0.85],
projection=ccrs.PlateCarree(central_longitude=180))
ax.stock_img()
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding],
crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--')
gl.top_labels = gl.right_labels = False
ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14)
line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2)
point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
storm_info_text = fig.text(0.70, 0.60, '', fontsize=10,
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
from matplotlib.lines import Line2D
standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard
legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat,
markerfacecolor=details['hex'], markersize=8)
for cat, details in standard_dict.items()]
ax.legend(handles=legend_elements, title="Storm Categories",
loc='upper right', fontsize=9)
def init():
line.set_data([], [])
point.set_data([], [])
date_text.set_text('')
storm_info_text.set_text('')
return line, point, date_text, storm_info_text
def update(frame):
line.set_data(lons[:frame+1], lats[:frame+1])
point.set_data([lons[frame]], [lats[frame]])
wind_speed = winds[frame] if frame < len(winds) and not pd.isna(winds[frame]) else 0
category, color = categorize_typhoon_by_standard(wind_speed, standard)
point.set_color(color)
dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M')
date_text.set_text(dt_str)
info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}")
storm_info_text.set_text(info_str)
return line, point, date_text, storm_info_text
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times),
interval=200, blit=True, repeat=True)
# Create animation file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir=DATA_PATH)
try:
writer = animation.FFMpegWriter(fps=5, bitrate=1800)
ani.save(temp_file.name, writer=writer)
plt.close(fig)
return temp_file.name
except Exception as e:
logging.error(f"Error creating animation: {e}")
plt.close(fig)
return None
def simplified_track_video(year, basin, typhoon, standard):
"""Simplified track video function"""
if not typhoon:
return None
storm_id = typhoon.split('(')[-1].strip(')')
return generate_track_video_from_csv(year, storm_id, standard)
# -----------------------------
# FIXED: Update Typhoon Options Function
# -----------------------------
def update_typhoon_options_fixed(year, basin):
"""Fixed version of update_typhoon_options"""
try:
# Use the typhoon_data already loaded
if typhoon_data is None or typhoon_data.empty:
logging.error("No typhoon data available")
return gr.update(choices=[], value=None)
# Filter by year
if 'ISO_TIME' in typhoon_data.columns:
year_data = typhoon_data[typhoon_data['ISO_TIME'].dt.year == int(year)].copy()
elif 'SEASON' in typhoon_data.columns:
year_data = typhoon_data[typhoon_data['SEASON'] == int(year)].copy()
else:
# Fallback: use all data
year_data = typhoon_data.copy()
if basin != "All Basins":
# Extract basin code
basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
# Filter by basin
if 'SID' in year_data.columns:
year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
elif 'BASIN' in year_data.columns:
year_data = year_data[year_data['BASIN'] == basin_code]
if year_data.empty:
logging.warning(f"No storms found for year {year} and basin {basin}")
return gr.update(choices=[], value=None)
# Get unique storms and create options
storms = year_data.groupby('SID').first().reset_index()
options = []
for _, storm in storms.iterrows():
name = storm.get('NAME', 'UNNAMED')
if pd.isna(name) or name == '' or name == 'UNNAMED':
name = 'UNNAMED'
sid = storm['SID']
options.append(f"{name} ({sid})")
if not options:
return gr.update(choices=[], value=None)
return gr.update(choices=sorted(options), value=options[0])
except Exception as e:
logging.error(f"Error in update_typhoon_options_fixed: {e}")
return gr.update(choices=[], value=None)
# -----------------------------
# Load & Process Data (using fixed functions)
# -----------------------------
logging.info("Starting data loading process...")
update_oni_data()
oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
logging.info("Data loading complete.")
# -----------------------------
# FIXED Gradio Interface
# -----------------------------
# Fixed Gradio interface creation
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase.
- **Wind Analysis**: Examine wind speed vs ONI relationships.
- **Pressure Analysis**: Analyze pressure vs ONI relationships.
- **Longitude Analysis**: Study typhoon generation longitude vs ONI.
- **Path Animation**: View animated storm tracks on a world map.
- **TSNE Cluster**: Perform t-SNE clustering on storm routes.
### Data Status:
- **ONI Data**: %d years loaded
- **Typhoon Data**: %d records loaded
- **Merged Data**: %d typhoons with ONI values
""" % (len(oni_data), len(typhoon_data), len(merged_data)))
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks")
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
analyze_btn.click(fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count])
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
wind_analyze_btn.click(fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results])
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
pressure_analyze_btn.click(fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results])
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
lon_analyze_btn.click(fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results])
with gr.Tab("Tropical Cyclone Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000")
basin_constant = gr.Textbox(value="All Basins", visible=False)
with gr.Row():
typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
animate_btn = gr.Button("Generate Animation")
# Fixed Video component - removed format and elem_id parameters
path_video = gr.Video(label="Tropical Cyclone Path Animation", interactive=False)
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year.
2. Choose a tropical cyclone from the populated list.
3. Select a classification standard (Atlantic or Taiwan).
4. Click "Generate Animation".
5. The animation displays the storm track on a world map with dynamic sidebar information.
""")
# Update typhoon dropdown using fixed function
year_dropdown.change(fn=update_typhoon_options_fixed,
inputs=[year_dropdown, basin_constant],
outputs=typhoon_dropdown)
animate_btn.click(fn=simplified_track_video,
inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown],
outputs=path_video)
with gr.Tab("TSNE Cluster"):
with gr.Row():
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
tsne_analyze_btn = gr.Button("Analyze")
tsne_plot = gr.Plot(label="t-SNE Clusters")
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
stats_plot = gr.Plot(label="Cluster Statistics")
cluster_info = gr.Textbox(label="Cluster Information", lines=10)
tsne_analyze_btn.click(fn=update_route_clusters,
inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
outputs=[tsne_plot, routes_plot, stats_plot, cluster_info])
# Fixed launch command
if __name__ == "__main__":
demo.launch() |