Spaces:
Running
Running
File size: 50,229 Bytes
7fa25f7 efb47b3 4d9b5c3 a74a30d a566db2 84e165d a2d2271 efb47b3 a566db2 efb47b3 a566db2 a2d2271 a566db2 16ed767 84e165d efb47b3 a2d2271 eb8c873 efb47b3 a2d2271 eb8c873 efb47b3 4d9b5c3 a2d2271 373b768 a2d2271 eb8c873 373b768 a2d2271 16ed767 a2d2271 eb8c873 a2d2271 16ed767 efb47b3 611f47d 84e165d a566db2 eb8c873 a566db2 eb8c873 a566db2 a2d2271 efb47b3 eb8c873 a566db2 eb8c873 efb47b3 a2d2271 eb8c873 a2d2271 eb8c873 a566db2 eb8c873 a2d2271 eb8c873 a566db2 aa74248 a566db2 eb8c873 a566db2 a2d2271 eb8c873 a566db2 eb8c873 a2d2271 aa74248 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 eb8c873 efb47b3 a2d2271 a566db2 a2d2271 4d9b5c3 a566db2 a2d2271 a566db2 4d9b5c3 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 a2d2271 a566db2 16ed767 a2d2271 eb8c873 373b768 eb8c873 373b768 eb8c873 373b768 eb8c873 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 7fa25f7 373b768 a2d2271 4d9b5c3 15b9748 4d9b5c3 15b9748 16ed767 a74a30d 4d9b5c3 a74a30d 4d9b5c3 a74a30d 3c29d09 4d9b5c3 611f47d 118dab9 16ed767 118dab9 373b768 16ed767 373b768 611f47d ffc184a 4d9b5c3 ffc184a 4d9b5c3 118dab9 ffc184a 4d9b5c3 15b9748 a566db2 16ed767 84e165d 16ed767 84e165d 611f47d 84e165d 611f47d 84e165d 611f47d 16ed767 84e165d 16ed767 611f47d 16ed767 84e165d 16ed767 84e165d 111d9eb 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 611f47d 16ed767 84e165d 111d9eb 84e165d 111d9eb 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 84e165d 111d9eb 84e165d 16ed767 84e165d 16ed767 84e165d 16ed767 a2d2271 a566db2 912d5b8 16ed767 84e165d 912d5b8 a2d2271 a566db2 a2d2271 a566db2 912d5b8 e28f12c 15b9748 e28f12c 15b9748 e28f12c 09a0f4d a566db2 e28f12c a566db2 e28f12c 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 09a0f4d 912d5b8 a566db2 a2d2271 912d5b8 15b9748 912d5b8 bb0d660 4d9b5c3 912d5b8 15b9748 bb0d660 4d9b5c3 351cc17 373b768 611f47d 912d5b8 a566db2 912d5b8 4d9b5c3 a566db2 4d9b5c3 a566db2 16ed767 84e165d 16ed767 a2d2271 bb0d660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from scipy.interpolate import interp1d
# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
# Color maps for Plotly (RGB)
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
# Classification standards with distinct colors for Matplotlib
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# Season months mapping
season_months = {
'all': list(range(1, 13)),
'summer': [6, 7, 8],
'winter': [12, 1, 2]
}
# Regions for duration calculations
regions = {
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}
# Data loading and preprocessing functions
def download_oni_file(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_ibtracs_data():
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
next(infile); next(infile)
reader = csv.reader(infile)
sid_data = defaultdict(list)
for row in reader:
if row:
sid = row[0]
sid_data[sid].append((row, row[6]))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date, 'END_DATE': end_date
})
def load_data(oni_path, typhoon_path):
oni_data = pd.read_csv(oni_path)
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
return oni_data, typhoon_data
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
'LAT': 'first', 'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed
if wind_speed_kt >= 137:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83:
return 'C2 Typhoon'
elif wind_speed_kt >= 64:
return 'C1 Typhoon'
elif wind_speed_kt >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Main analysis functions (using Plotly)
def generate_typhoon_tracks(filtered_data, typhoon_search):
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(
title='Typhoon Tracks',
geo=dict(projection_type='natural earth', showland=True),
height=700
)
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_regression_analysis(filtered_data):
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1, 1)
y = filtered_data['ONI']
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
# Video animation function with fixed sidebar
def categorize_typhoon_by_standard(wind_speed, standard):
if standard == 'taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']
def generate_track_video(year, typhoon, standard):
if not typhoon:
return None
typhoon_id = typhoon.split('(')[-1].strip(')')
storm = ibtracs.get_storm(typhoon_id)
# Map focus
min_lat, max_lat = min(storm.lat), max(storm.lat)
min_lon, max_lon = min(storm.lon), max(storm.lon)
lat_padding = max((max_lat - min_lat) * 0.3, 5)
lon_padding = max((max_lon - min_lon) * 0.3, 5)
# Set up the figure (900x700 pixels at 100 DPI)
fig = plt.figure(figsize=(9, 7), dpi=100)
ax = plt.axes([0.05, 0.05, 0.65, 0.90], projection=ccrs.PlateCarree()) # Adjusted to leave space for sidebar
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding], crs=ccrs.PlateCarree())
# Add world map features
ax.add_feature(cfeature.LAND, facecolor='lightgray')
ax.add_feature(cfeature.OCEAN, facecolor='lightblue')
ax.add_feature(cfeature.COASTLINE, edgecolor='black')
ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
ax.gridlines(draw_labels=True, linestyle='--', color='gray', alpha=0.5)
ax.set_title(f"{year} {storm.name} Typhoon Path")
# Initialize the line and point
line, = ax.plot([], [], 'b-', linewidth=2, transform=ccrs.PlateCarree())
point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10, bbox=dict(facecolor='white', alpha=0.8))
# Add sidebar on the right with adjusted positions
details_title = fig.text(0.7, 0.95, "Typhoon Details", fontsize=12, fontweight='bold', verticalalignment='top')
details_text = fig.text(0.7, 0.85, '', fontsize=12, verticalalignment='top',
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
# Add color legend
standard_dict = atlantic_standard if standard == 'atlantic' else taiwan_standard
legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=f"{cat}",
markerfacecolor=details['hex'], markersize=10)
for cat, details in standard_dict.items()]
fig.legend(handles=legend_elements, title="Color Legend", loc='center right',
bbox_to_anchor=(0.95, 0.5), fontsize=10)
def init():
line.set_data([], [])
point.set_data([], [])
date_text.set_text('')
details_text.set_text('')
return line, point, date_text, details_text
def update(frame):
line.set_data(storm.lon[:frame+1], storm.lat[:frame+1])
category, color = categorize_typhoon_by_standard(storm.vmax[frame], standard)
point.set_data([storm.lon[frame]], [storm.lat[frame]])
point.set_color(color)
date_text.set_text(storm.time[frame].strftime('%Y-%m-%d %H:%M'))
details = f"Name: {storm.name}\n" \
f"Date: {storm.time[frame].strftime('%Y-%m-%d %H:%M')}\n" \
f"Wind Speed: {storm.vmax[frame]:.1f} kt\n" \
f"Category: {category}"
details_text.set_text(details)
return line, point, date_text, details_text
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(storm.time),
interval=200, blit=True, repeat=True)
# Save as video
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
writer = animation.FFMpegWriter(fps=5, bitrate=1800)
ani.save(temp_file.name, writer=writer)
plt.close(fig)
return temp_file.name
# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
data['western_typhoon'] = (data['LON'] <= 140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
# t-SNE clustering functions
def filter_west_pacific_coordinates(lons, lats):
mask = (lons >= 100) & (lons <= 180) & (lats >= 0) & (lats <= 40)
return lons[mask], lats[mask]
def filter_storm_by_season(storm, season):
start_month = storm.time[0].month
if season == 'all':
return True
elif season == 'summer':
return 4 <= start_month <= 8
elif season == 'winter':
return 9 <= start_month <= 12
return False
def point_region(lat, lon):
twl = regions["Taiwan Land"]
if twl["lat_min"] <= lat <= twl["lat_max"] and twl["lon_min"] <= lon <= twl["lon_max"]:
return "Taiwan Land"
tws = regions["Taiwan Sea"]
if tws["lat_min"] <= lat <= tws["lat_max"] and tws["lon_min"] <= lon <= tws["lon_max"]:
if not (twl["lat_min"] <= lat <= twl["lat_max"] and twl["lon_min"] <= lon <= twl["lon_max"]):
return "Taiwan Sea"
for rg in ["Japan", "China", "Hong Kong", "Philippines"]:
box = regions[rg]
if box["lat_min"] <= lat <= box["lat_max"] and box["lon_min"] <= lon <= box["lon_max"]:
return rg
return None
def calculate_region_durations(lons, lats, times):
region_times = defaultdict(float)
point_regions_list = [point_region(lats[i], lons[i]) for i in range(len(lons))]
for i in range(len(lons) - 1):
dt = (times[i + 1] - times[i]).total_seconds() / 3600.0
r1 = point_regions_list[i]
r2 = point_regions_list[i + 1]
if r1 and r2:
if r1 == r2:
region_times[r1] += dt
else:
region_times[r1] += dt / 2
region_times[r2] += dt / 2
elif r1 and not r2:
region_times[r1] += dt / 2
elif r2 and not r1:
region_times[r2] += dt / 2
return dict(region_times)
def endpoint_region_label(cluster_label, cluster_labels, filtered_storms):
indices = np.where(cluster_labels == cluster_label)[0]
if len(indices) == 0:
return ""
end_count = defaultdict(int)
for idx in indices:
lons, lats, vmax_, mslp_, times = filtered_storms[idx]
reg = point_region(lats[-1], lons[-1])
if reg:
end_count[reg] += 1
if end_count:
max_reg = max(end_count, key=end_count.get)
ratio = end_count[max_reg] / len(indices)
if ratio > 0.5:
return max_reg
return ""
def dynamic_dbscan(tsne_results, min_clusters=10, max_clusters=20, eps_values=np.linspace(1.0, 10.0, 91)):
best_labels = None
best_n_clusters = 0
best_n_noise = len(tsne_results)
best_eps = None
for eps in eps_values:
dbscan = DBSCAN(eps=eps, min_samples=3)
labels = dbscan.fit_predict(tsne_results)
unique_labels = set(labels)
if -1 in unique_labels:
unique_labels.remove(-1)
n_clusters = len(unique_labels)
n_noise = np.sum(labels == -1)
if min_clusters <= n_clusters <= max_clusters and n_noise < best_n_noise:
best_labels = labels
best_n_clusters = n_clusters
best_n_noise = n_noise
best_eps = eps
if best_labels is None:
for eps in eps_values[::-1]:
dbscan = DBSCAN(eps=eps, min_samples=3)
labels = dbscan.fit_predict(tsne_results)
unique_labels = set(labels)
if -1 in unique_labels:
unique_labels.remove(-1)
n_clusters = len(unique_labels)
if n_clusters == max_clusters:
best_labels = labels
best_n_clusters = n_clusters
best_n_noise = np.sum(labels == -1)
best_eps = eps
break
return best_labels, best_n_clusters, best_n_noise, best_eps
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
start_date = datetime(int(start_year), int(start_month), 1)
end_date = datetime(int(end_year), int(end_month), 28)
all_storms_data = []
for year in range(int(start_year), int(end_year) + 1):
season_data = ibtracs.get_season(year)
for storm_id in season_data.summary()['id']:
storm = ibtracs.get_storm(storm_id)
if storm.time[0] >= start_date and storm.time[-1] <= end_date and filter_storm_by_season(storm, season):
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
if len(lons) > 1:
start_time = storm.time[0]
start_year_storm = start_time.year
start_month_storm = start_time.month
oni_row = oni_long[(oni_long['Year'] == start_year_storm) & (oni_long['Month'] == f'{start_month_storm:02d}')]
if not oni_row.empty:
oni_value_storm = oni_row['ONI'].iloc[0]
enso_phase_storm = classify_enso_phases(oni_value_storm)
if enso_value == 'all' or enso_phase_storm == enso_value.capitalize():
all_storms_data.append((lons, lats, np.array(storm.vmax), np.array(storm.mslp), np.array(storm.time), storm.name, enso_phase_storm))
if not all_storms_data:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No storms found in the selected period."
# Prepare route vectors for t-SNE
max_length = max(len(st[0]) for st in all_storms_data)
route_vectors = []
filtered_storms = []
storms_vmax_list = []
storms_mslp_list = []
for idx, (lons, lats, vmax, mslp, times, name, enso_phase) in enumerate(all_storms_data):
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
try:
lon_i = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
lat_i = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
vmax_i = interp1d(t, vmax, kind='linear', fill_value='extrapolate')(t_new)
if not np.all(np.isnan(mslp)):
mslp_i = interp1d(t, mslp, kind='linear', fill_value='extrapolate')(t_new)
else:
mslp_i = np.full(max_length, np.nan)
except Exception as e:
continue
route_vector = np.column_stack((lon_i, lat_i)).flatten()
if np.isnan(route_vector).any():
continue
route_vectors.append(route_vector)
filtered_storms.append((lons, lats, vmax_i, mslp_i, times))
storms_vmax_list.append(vmax_i)
storms_mslp_list.append(mslp_i)
route_vectors = np.array(route_vectors)
if len(route_vectors) == 0:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
# Perform t-SNE
tsne = TSNE(n_components=2, random_state=42, verbose=1)
tsne_results = tsne.fit_transform(route_vectors)
# Dynamic DBSCAN clustering
best_labels, best_n_clusters, best_n_noise, best_eps = dynamic_dbscan(tsne_results)
# Calculate region durations and mean routes
unique_labels = sorted(set(best_labels) - {-1})
label_to_idx = {label: i for i, label in enumerate(unique_labels)}
cluster_region_durations = [defaultdict(float) for _ in range(len(unique_labels))]
cluster_mean_routes = []
cluster_mean_vmax = []
cluster_mean_mslp = []
for i, (lons, lats, vmax, mslp, times) in enumerate(filtered_storms):
c = best_labels[i]
if c == -1:
continue
durations = calculate_region_durations(lons, lats, times)
idx = label_to_idx[c]
for r, val in durations.items():
cluster_region_durations[idx][r] += val
for c in unique_labels:
indices = np.where(best_labels == c)[0]
if len(indices) == 0:
cluster_mean_routes.append(([], []))
cluster_mean_vmax.append([])
cluster_mean_mslp.append([])
continue
cluster_lons = []
cluster_lats = []
cluster_v = []
cluster_p = []
for idx in indices:
lons, lats, vmax_, mslp_, times = filtered_storms[idx]
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
lon_i = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
lat_i = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
cluster_lons.append(lon_i)
cluster_lats.append(lat_i)
cluster_v.append(storms_vmax_list[idx])
if not np.all(np.isnan(storms_mslp_list[idx])):
cluster_p.append(storms_mslp_list[idx])
if cluster_lons and cluster_lats:
mean_lon = np.mean(cluster_lons, axis=0)
mean_lat = np.mean(cluster_lats, axis=0)
mean_v = np.mean(cluster_v, axis=0)
if cluster_p:
mean_p = np.nanmean(cluster_p, axis=0)
else:
mean_p = np.full(max_length, np.nan)
cluster_mean_routes.append((mean_lon, mean_lat))
cluster_mean_vmax.append(mean_v)
cluster_mean_mslp.append(mean_p)
else:
cluster_mean_routes.append(([], []))
cluster_mean_vmax.append([])
cluster_mean_mslp.append([])
# t-SNE Scatter Plot
fig_tsne = go.Figure()
cluster_colors = px.colors.qualitative.Safe
if len(cluster_colors) < len(unique_labels):
cluster_colors = px.colors.qualitative.Dark24
for i, c in enumerate(unique_labels):
indices = np.where(best_labels == c)[0]
end_reg = endpoint_region_label(c, best_labels, filtered_storms)
name = f"Cluster {i+1}" + (f" (towards {end_reg})" if end_reg else "")
fig_tsne.add_trace(go.Scatter(
x=tsne_results[indices, 0],
y=tsne_results[indices, 1],
mode='markers',
marker=dict(size=5, color=cluster_colors[i % len(cluster_colors)]),
name=name
))
noise_indices = np.where(best_labels == -1)[0]
if len(noise_indices) > 0:
fig_tsne.add_trace(go.Scatter(
x=tsne_results[noise_indices, 0],
y=tsne_results[noise_indices, 1],
mode='markers',
marker=dict(size=5, color='grey'),
name='Noise'
))
fig_tsne.update_layout(
title="TSNE of Typhoon Routes",
xaxis_title="TSNE Dim 1",
yaxis_title="TSNE Dim 2",
legend_title="Clusters"
)
# Typhoon Routes Plot with Mean Routes
fig_routes = go.Figure()
for i, (lons, lats, _, _, _) in enumerate(filtered_storms):
c = best_labels[i]
if c == -1:
continue
color_idx = label_to_idx[c]
fig_routes.add_trace(
go.Scattergeo(
lon=lons,
lat=lats,
mode='lines',
opacity=0.3,
line=dict(width=1, color=cluster_colors[color_idx % len(cluster_colors)]),
showlegend=False
)
)
for i, c in enumerate(unique_labels):
mean_lon, mean_lat = cluster_mean_routes[i]
if len(mean_lon) == 0:
continue
end_reg = endpoint_region_label(c, best_labels, filtered_storms)
name = f"Cluster {i+1}" + (f" (towards {end_reg})" if end_reg else "")
fig_routes.add_trace(
go.Scattergeo(
lon=mean_lon,
lat=mean_lat,
mode='lines',
line=dict(width=4, color=cluster_colors[i % len(cluster_colors)]),
name=name
)
)
fig_routes.add_trace(
go.Scattergeo(
lon=[mean_lon[0]],
lat=[mean_lat[0]],
mode='markers',
marker=dict(size=10, color='green', symbol='triangle-up'),
name=f"Cluster {i+1} Start"
)
)
fig_routes.add_trace(
go.Scattergeo(
lon=[mean_lon[-1]],
lat=[mean_lat[-1]],
mode='markers',
marker=dict(size=10, color='red', symbol='x'),
name=f"Cluster {i+1} End"
)
)
enso_phase_text = {'all': 'All Years', 'El Nino': 'El Niño', 'La Nina': 'La Niña', 'Neutral': 'Neutral Years'}
fig_routes.update_layout(
title=f"West Pacific Typhoon Routes ({start_year}-{end_year}, {season.capitalize()}, {enso_phase_text.get(enso_value, 'All Years')})",
geo=dict(scope='asia', projection_type='mercator', showland=True, landcolor='lightgray')
)
# Cluster Statistics Plot
fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True, subplot_titles=("Average Wind Speed", "Average Pressure"))
for i, c in enumerate(unique_labels):
if len(cluster_mean_vmax[i]) > 0:
end_reg = endpoint_region_label(c, best_labels, filtered_storms)
name = f"Cluster {i+1}" + (f" ({end_reg})" if end_reg else "")
fig_stats.add_trace(
go.Scatter(y=cluster_mean_vmax[i], mode='lines', line=dict(width=2, color=cluster_colors[i % len(cluster_colors)]), name=name),
row=1, col=1
)
if not np.all(np.isnan(cluster_mean_mslp[i])):
fig_stats.add_trace(
go.Scatter(y=cluster_mean_mslp[i], mode='lines', line=dict(width=2, color=cluster_colors[i % len(cluster_colors)]), name=name),
row=2, col=1
)
fig_stats.update_layout(
title="Cluster Average Wind & Pressure Profiles",
xaxis_title="Route Normalized Index",
yaxis_title="Wind Speed (knots)",
xaxis2_title="Route Normalized Index",
yaxis2_title="Pressure (hPa)",
showlegend=True,
legend_tracegroupgap=300
)
# Cluster Information
cluster_info_lines = [f"Selected DBSCAN eps: {best_eps:.2f}", f"Number of noise points: {best_n_noise}"]
for i, c in enumerate(unique_labels):
indices = np.where(best_labels == c)[0]
count = len(indices)
if count == 0:
continue
avg_durations = {r: (cluster_region_durations[i][r] / count) for r in cluster_region_durations[i]}
end_reg = endpoint_region_label(c, best_labels, filtered_storms)
name = f"Cluster {i+1}" + (f" (towards {end_reg})" if end_reg else "")
cluster_info_lines.append(f"\n{name}")
if avg_durations:
for reg, hrs in avg_durations.items():
cluster_info_lines.append(f"{reg}: {hrs:.2f} hours")
else:
cluster_info_lines.append("No significant region durations.")
if end_reg in ["Taiwan Land", "Taiwan Sea"] and len(cluster_mean_vmax[i]) > 0:
final_wind = cluster_mean_vmax[i][-1]
if final_wind >= 34:
cluster_info_lines.append(
"CWA would issue a land warning ~18 hours before arrival." if end_reg == "Taiwan Land"
else "CWA would issue a sea warning ~24 hours before arrival."
)
if len(noise_indices) > 0:
cluster_info_lines.append(f"\nNoise Cluster\nNumber of storms classified as noise: {len(noise_indices)}")
cluster_info_text = "\n".join(cluster_info_lines)
return fig_tsne, fig_routes, fig_stats, cluster_info_text
# Gradio Interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase
- **Wind Analysis**: Examine wind speed vs ONI relationships
- **Pressure Analysis**: Analyze pressure vs ONI relationships
- **Longitude Analysis**: Study typhoon generation longitude vs ONI
- **Path Animation**: Watch animated typhoon paths with a sidebar
- **TSNE Cluster**: Perform t-SNE clustering on typhoon routes with mean routes and region analysis
Select a tab above to begin your analysis.
""")
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID'] == sid]
name = storm_data['NAME'].iloc[0] if not pd.isna(storm_data['NAME'].iloc[0]) else "Unnamed"
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({storm_data['SEASON'].iloc[0]})",
line=dict(width=1.5, color=color),
hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID'] == sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
line=dict(width=3, color='yellow'),
marker=dict(size=5),
hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(204, 204, 204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El Niño, Blue: La Niña, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
analyze_btn.click(
fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count]
)
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
wind_analyze_btn.click(
fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results]
)
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
pressure_analyze_btn.click(
fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results]
)
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
lon_analyze_btn.click(
fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results]
)
with gr.Tab("Typhoon Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
typhoon_dropdown = gr.Dropdown(label="Typhoon")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
animate_btn = gr.Button("Generate Animation")
path_video = gr.Video(label="Typhoon Path Animation", elem_id="path_video")
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year and typhoon from the dropdowns
2. Choose a classification standard (Atlantic or Taiwan)
3. Click "Generate Animation"
4. Use the video player's built-in controls to play, pause, or scrub through the animation
5. The animation shows the typhoon track growing over a world map, with:
- Date on the bottom left
- Sidebar on the right showing typhoon details (name, date, wind speed, category) as it moves
- Color legend with colored markers centered on the right
""")
def update_typhoon_options(year):
season = ibtracs.get_season(int(year))
storm_summary = season.summary()
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
return gr.update(choices=options, value=options[0] if options else None)
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
animate_btn.click(
fn=generate_track_video,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=path_video
)
with gr.Tab("TSNE Cluster"):
with gr.Row():
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
tsne_analyze_btn = gr.Button("Analyze")
tsne_plot = gr.Plot(label="t-SNE Clusters")
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
stats_plot = gr.Plot(label="Cluster Statistics")
cluster_info = gr.Textbox(label="Cluster Information", lines=10)
tsne_analyze_btn.click(
fn=update_route_clusters,
inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
outputs=[tsne_plot, routes_plot, stats_plot, cluster_info]
)
demo.launch(share=True) |