File size: 73,305 Bytes
a60f1c0
 
 
 
 
 
 
 
6384d58
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
84e165d
27f90be
16ed767
b37a702
a60f1c0
b37a702
84e165d
7513911
a60f1c0
 
 
 
 
b37a702
 
 
 
 
 
 
 
4d8869d
 
b37a702
4d8869d
 
b37a702
 
4d8869d
 
b37a702
4d8869d
 
b37a702
4d8869d
b37a702
a60f1c0
 
 
 
 
 
57cb1ac
 
a60f1c0
 
 
 
87de8af
a60f1c0
 
 
8ce2887
 
7513911
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
efb47b3
 
87de8af
e509f96
473c7a8
e509f96
 
 
 
 
bc15b27
 
 
 
efb47b3
a60f1c0
b37a702
a60f1c0
b37a702
 
 
 
 
 
 
 
 
 
 
 
a2d2271
 
373b768
 
 
 
 
 
a2d2271
b37a702
a2d2271
16ed767
 
 
 
 
 
 
a2d2271
b37a702
a2d2271
16ed767
 
 
 
efb47b3
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
 
473c7a8
eb8c873
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
473c7a8
eb8c873
a60f1c0
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
473c7a8
eb8c873
 
 
 
473c7a8
 
 
 
 
 
 
 
efb47b3
473c7a8
 
 
 
 
 
 
 
 
b37a702
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
a7058dd
 
 
 
66c3b07
 
 
 
 
 
473c7a8
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
a7058dd
 
473c7a8
a7058dd
66c3b07
 
 
 
a7058dd
 
66c3b07
 
 
 
 
473c7a8
8ce2887
66c3b07
8ce2887
473c7a8
 
a7058dd
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
 
 
76771b5
 
 
 
5cfd2b7
76771b5
5cfd2b7
 
 
 
473c7a8
5cfd2b7
 
76771b5
 
 
 
5cfd2b7
76771b5
473c7a8
 
 
 
76771b5
 
 
473c7a8
66c3b07
473c7a8
66c3b07
 
473c7a8
5cfd2b7
473c7a8
 
5cfd2b7
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
66c3b07
473c7a8
66c3b07
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
76771b5
 
a566db2
473c7a8
66c3b07
 
b37a702
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
 
 
 
 
 
 
 
 
66c3b07
 
 
473c7a8
eb8c873
473c7a8
eb8c873
a60f1c0
 
a2d2271
a60f1c0
eb8c873
 
 
 
473c7a8
66c3b07
 
eb8c873
 
 
473c7a8
a60f1c0
473c7a8
eb8c873
a60f1c0
 
eb8c873
473c7a8
66c3b07
 
 
 
 
 
 
 
b37a702
eb8c873
 
 
473c7a8
a60f1c0
eb8c873
b37a702
 
 
 
 
 
66c3b07
b37a702
 
 
 
 
 
 
 
66c3b07
b37a702
a2d2271
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
473c7a8
eb8c873
 
66c3b07
 
eb8c873
 
 
 
 
 
efb47b3
87de8af
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
 
4d8869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
 
 
87de8af
473c7a8
1ca7717
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
1ca7717
 
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
1ca7717
 
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
a2d2271
87de8af
b37a702
87de8af
473c7a8
e6b6548
473c7a8
e6b6548
 
a60f1c0
e6b6548
 
ce399c7
e6b6548
 
 
 
a60f1c0
66c3b07
 
57cb1ac
473c7a8
a60f1c0
 
e6b6548
 
87de8af
a60f1c0
e6b6548
 
 
 
 
a60f1c0
e6b6548
 
87de8af
e6b6548
a60f1c0
e6b6548
 
 
 
 
 
 
a60f1c0
 
 
e6b6548
 
 
 
 
 
 
 
 
87de8af
e6b6548
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
 
473c7a8
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
a60f1c0
b37a702
66c3b07
 
 
a60f1c0
eb8c873
 
373b768
eb8c873
373b768
eb8c873
373b768
 
eb8c873
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
 
a2d2271
87de8af
b37a702
87de8af
473c7a8
b37a702
 
 
 
 
 
57cb1ac
b37a702
473c7a8
b37a702
15b9748
b37a702
 
57cb1ac
b37a702
473c7a8
b37a702
66c3b07
b37a702
66c3b07
b37a702
66c3b07
b37a702
 
 
 
473c7a8
b37a702
473c7a8
 
 
 
 
 
 
 
b37a702
473c7a8
b37a702
 
 
 
 
 
 
 
473c7a8
b37a702
 
473c7a8
b37a702
473c7a8
b37a702
 
 
 
 
473c7a8
 
b37a702
 
473c7a8
 
57cb1ac
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611f47d
473c7a8
8ce2887
473c7a8
 
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473c7a8
87de8af
b37a702
87de8af
473c7a8
8ce2887
b37a702
8ce2887
b37a702
 
 
8ce2887
b37a702
8ce2887
b37a702
a60f1c0
b37a702
a60f1c0
b37a702
 
 
 
 
 
8ce2887
b37a702
8ce2887
 
 
b37a702
 
 
4d8869d
 
b37a702
4d8869d
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
8ef7489
4d8869d
 
b37a702
 
4d8869d
 
b37a702
4d8869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
 
8ce2887
b37a702
8ce2887
b3a513b
8ce2887
 
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
b37a702
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
 
 
8ce2887
b37a702
 
 
 
 
 
 
 
 
 
 
8ce2887
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
b37a702
 
 
 
 
 
 
 
 
 
 
8ce2887
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
a2d2271
473c7a8
a7058dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv 
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr

# NEW: Advanced ML imports
try:
    import umap.umap_ as umap
    UMAP_AVAILABLE = True
except ImportError:
    UMAP_AVAILABLE = False
    print("UMAP not available - clustering features limited")

# Optional CNN imports with robust error handling
CNN_AVAILABLE = False
try:
    # Set environment variables before importing TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # Suppress TensorFlow warnings
    import tensorflow as tf
    from tensorflow.keras import layers, models
    # Test if TensorFlow actually works
    tf.config.set_visible_devices([], 'GPU')  # Disable GPU to avoid conflicts
    CNN_AVAILABLE = True
    print("βœ… TensorFlow successfully loaded - CNN features enabled")
except Exception as e:
    CNN_AVAILABLE = False
    print(f"❌ TensorFlow not available - CNN features disabled: {str(e)[:100]}...")

try:
    import cdsapi
    CDSAPI_AVAILABLE = True
except ImportError:
    CDSAPI_AVAILABLE = False

import tropycal.tracks as tracks

# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Remove argument parser to simplify startup
DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir()

# Ensure directory exists and is writable
try:
    os.makedirs(DATA_PATH, exist_ok=True)
    # Test write permissions
    test_file = os.path.join(DATA_PATH, 'test_write.txt')
    with open(test_file, 'w') as f:
        f.write('test')
    os.remove(test_file)
    logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
    logging.warning(f"Data directory not writable, using temp dir: {e}")
    DATA_PATH = tempfile.mkdtemp()
    logging.info(f"Using temporary directory: {DATA_PATH}")

# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')

# IBTrACS settings
BASIN_FILES = {
    'EP': 'ibtracs.EP.list.v04r01.csv',
    'NA': 'ibtracs.NA.list.v04r01.csv',
    'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1

# -----------------------------
# ENHANCED: Color Maps and Standards with TD Support
# -----------------------------
enhanced_color_map = {
    'Unknown': 'rgb(200, 200, 200)',
    'Tropical Depression': 'rgb(128, 128, 128)',  # NEW: Gray for TD
    'Tropical Storm': 'rgb(0, 0, 255)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C5 Super Typhoon': 'rgb(255, 0, 0)'
}

# Original color map for backward compatibility
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}

atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------

def safe_file_write(file_path, data_frame, backup_dir=None):
    """Safely write DataFrame to CSV with backup and error handling"""
    try:
        # Create directory if it doesn't exist
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        
        # Try to write to a temporary file first
        temp_path = file_path + '.tmp'
        data_frame.to_csv(temp_path, index=False)
        
        # If successful, rename to final file
        os.rename(temp_path, file_path)
        logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
        return True
        
    except PermissionError as e:
        logging.warning(f"Permission denied writing to {file_path}: {e}")
        if backup_dir:
            try:
                backup_path = os.path.join(backup_dir, os.path.basename(file_path))
                data_frame.to_csv(backup_path, index=False)
                logging.info(f"Saved to backup location: {backup_path}")
                return True
            except Exception as backup_e:
                logging.error(f"Failed to save to backup location: {backup_e}")
        return False
        
    except Exception as e:
        logging.error(f"Error saving file {file_path}: {e}")
        # Clean up temp file if it exists
        temp_path = file_path + '.tmp'
        if os.path.exists(temp_path):
            try:
                os.remove(temp_path)
            except:
                pass
        return False

def get_fallback_data_dir():
    """Get a fallback data directory that's guaranteed to be writable"""
    fallback_dirs = [
        tempfile.gettempdir(),
        '/tmp',
        os.path.expanduser('~'),
        os.getcwd()
    ]
    
    for directory in fallback_dirs:
        try:
            test_dir = os.path.join(directory, 'typhoon_fallback')
            os.makedirs(test_dir, exist_ok=True)
            test_file = os.path.join(test_dir, 'test.txt')
            with open(test_file, 'w') as f:
                f.write('test')
            os.remove(test_file)
            return test_dir
        except:
            continue
    
    # If all else fails, use current directory
    return os.getcwd()

# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------

def download_oni_file(url, filename):
    """Download ONI file with retry logic"""
    max_retries = 3
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=30)
            response.raise_for_status()
            with open(filename, 'wb') as f:
                f.write(response.content)
            return True
        except Exception as e:
            logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)  # Exponential backoff
            else:
                logging.error(f"Failed to download ONI after {max_retries} attempts")
                return False

def convert_oni_ascii_to_csv(input_file, output_file):
    """Convert ONI ASCII format to CSV"""
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
                       'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
    
    try:
        with open(input_file, 'r') as f:
            lines = f.readlines()[1:]  # Skip header
            for line in lines:
                parts = line.split()
                if len(parts) >= 4:
                    season, year, anom = parts[0], parts[1], parts[-1]
                    if season in season_to_month:
                        month = season_to_month[season]
                        if season == 'DJF':
                            year = str(int(year)-1)
                        data[year][month-1] = anom
        
        # Write to CSV with safe write
        df = pd.DataFrame(data).T.reset_index()
        df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
        df = df.sort_values('Year').reset_index(drop=True)
        
        return safe_file_write(output_file, df, get_fallback_data_dir())
        
    except Exception as e:
        logging.error(f"Error converting ONI file: {e}")
        return False

def update_oni_data():
    """Update ONI data with error handling"""
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    
    try:
        if download_oni_file(url, temp_file):
            if not os.path.exists(input_file) or not os.path.exists(output_file):
                os.rename(temp_file, input_file)
                convert_oni_ascii_to_csv(input_file, output_file)
            else:
                os.remove(temp_file)
        else:
            # Create fallback ONI data if download fails
            logging.warning("Creating fallback ONI data")
            create_fallback_oni_data(output_file)
    except Exception as e:
        logging.error(f"Error updating ONI data: {e}")
        create_fallback_oni_data(output_file)

def create_fallback_oni_data(output_file):
    """Create minimal ONI data for testing"""
    years = range(2000, 2026)  # Extended to include 2025
    months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
    
    # Create synthetic ONI data
    data = []
    for year in years:
        row = [year]
        for month in months:
            # Generate some realistic ONI values
            value = np.random.normal(0, 1) * 0.5
            row.append(f"{value:.2f}")
        data.append(row)
    
    df = pd.DataFrame(data, columns=['Year'] + months)
    safe_file_write(output_file, df, get_fallback_data_dir())

# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------

def download_ibtracs_file(basin, force_download=False):
    """Download specific basin file from IBTrACS"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    url = IBTRACS_BASE_URL + filename
    
    # Check if file exists and is recent (less than 7 days old)
    if os.path.exists(local_path) and not force_download:
        file_age = time.time() - os.path.getmtime(local_path)
        if file_age < 7 * 24 * 3600:  # 7 days
            logging.info(f"Using cached {basin} basin file")
            return local_path
    
    try:
        logging.info(f"Downloading {basin} basin file from {url}")
        response = requests.get(url, timeout=60)
        response.raise_for_status()
        
        # Ensure directory exists
        os.makedirs(os.path.dirname(local_path), exist_ok=True)
        
        with open(local_path, 'wb') as f:
            f.write(response.content)
        logging.info(f"Successfully downloaded {basin} basin file")
        return local_path
    except Exception as e:
        logging.error(f"Failed to download {basin} basin file: {e}")
        return None

def examine_ibtracs_structure(file_path):
    """Examine the actual structure of an IBTrACS CSV file"""
    try:
        with open(file_path, 'r') as f:
            lines = f.readlines()
        
        # Show first 5 lines
        logging.info("First 5 lines of IBTrACS file:")
        for i, line in enumerate(lines[:5]):
            logging.info(f"Line {i}: {line.strip()}")
        
        # The first line contains the actual column headers
        # No need to skip rows for IBTrACS v04r01
        df = pd.read_csv(file_path, nrows=5)
        logging.info(f"Columns from first row: {list(df.columns)}")
        
        return list(df.columns)
    except Exception as e:
        logging.error(f"Error examining IBTrACS structure: {e}")
        return None

def load_ibtracs_csv_directly(basin='WP'):
    """Load IBTrACS data directly from CSV - FIXED VERSION"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    
    # Download if not exists
    if not os.path.exists(local_path):
        downloaded_path = download_ibtracs_file(basin)
        if not downloaded_path:
            return None
    
    try:
        # First, examine the structure
        actual_columns = examine_ibtracs_structure(local_path)
        if not actual_columns:
            logging.error("Could not examine IBTrACS file structure")
            return None
        
        # Read IBTrACS CSV - DON'T skip any rows for v04r01
        # The first row contains proper column headers
        logging.info(f"Reading IBTrACS CSV file: {local_path}")
        df = pd.read_csv(local_path, low_memory=False)  # Don't skip any rows
        
        logging.info(f"Original columns: {list(df.columns)}")
        logging.info(f"Data shape before cleaning: {df.shape}")
        
        # Check which essential columns exist
        required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
        available_required = [col for col in required_cols if col in df.columns]
        
        if len(available_required) < 2:
            logging.error(f"Missing critical columns. Available: {list(df.columns)}")
            return None
        
        # Clean and standardize the data with format specification
        if 'ISO_TIME' in df.columns:
            df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
        
        # Clean numeric columns
        numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
        for col in numeric_columns:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Filter out invalid/missing critical data
        valid_rows = df['LAT'].notna() & df['LON'].notna()
        df = df[valid_rows]
        
        # Ensure LAT/LON are in reasonable ranges
        df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
        df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
        
        # Add basin info if missing
        if 'BASIN' not in df.columns:
            df['BASIN'] = basin
        
        # Add default columns if missing
        if 'NAME' not in df.columns:
            df['NAME'] = 'UNNAMED'
        
        if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
            df['SEASON'] = df['ISO_TIME'].dt.year
        
        logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
        return df
        
    except Exception as e:
        logging.error(f"Error reading IBTrACS CSV file: {e}")
        return None

def load_ibtracs_data_fixed():
    """Fixed version of IBTrACS data loading"""
    ibtracs_data = {}
    
    # Try to load each basin, but prioritize WP for this application
    load_order = ['WP', 'EP', 'NA']
    
    for basin in load_order:
        try:
            logging.info(f"Loading {basin} basin data...")
            df = load_ibtracs_csv_directly(basin)
            
            if df is not None and not df.empty:
                ibtracs_data[basin] = df
                logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
            else:
                logging.warning(f"No data loaded for basin {basin}")
                ibtracs_data[basin] = None
                
        except Exception as e:
            logging.error(f"Failed to load basin {basin}: {e}")
            ibtracs_data[basin] = None
    
    return ibtracs_data

def load_data_fixed(oni_path, typhoon_path):
    """Fixed version of load_data function"""
    # Load ONI data
    oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 
                           'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 
                           'Oct': [], 'Nov': [], 'Dec': []})
    
    if not os.path.exists(oni_path):
        logging.warning(f"ONI data file not found: {oni_path}")
        update_oni_data()
    
    try:
        oni_data = pd.read_csv(oni_path)
        logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
    except Exception as e:
        logging.error(f"Error loading ONI data: {e}")
        update_oni_data()
        try:
            oni_data = pd.read_csv(oni_path)
        except Exception as e:
            logging.error(f"Still can't load ONI data: {e}")
    
    # Load typhoon data - NEW APPROACH
    typhoon_data = None
    
    # First, try to load from existing processed file
    if os.path.exists(typhoon_path):
        try:
            typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
            # Ensure basic columns exist and are valid
            required_cols = ['LAT', 'LON']
            if all(col in typhoon_data.columns for col in required_cols):
                if 'ISO_TIME' in typhoon_data.columns:
                    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
                logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
            else:
                logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
                typhoon_data = None
        except Exception as e:
            logging.error(f"Error loading processed typhoon data: {e}")
            typhoon_data = None
    
    # If no valid processed data, load from IBTrACS
    if typhoon_data is None or typhoon_data.empty:
        logging.info("Loading typhoon data from IBTrACS...")
        ibtracs_data = load_ibtracs_data_fixed()
        
        # Combine all available basin data, prioritizing WP
        combined_dfs = []
        for basin in ['WP', 'EP', 'NA']:
            if basin in ibtracs_data and ibtracs_data[basin] is not None:
                df = ibtracs_data[basin].copy()
                df['BASIN'] = basin
                combined_dfs.append(df)
        
        if combined_dfs:
            typhoon_data = pd.concat(combined_dfs, ignore_index=True)
            # Ensure SID has proper format
            if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
                # Create SID from basin and other identifiers if missing
                if 'SEASON' in typhoon_data.columns:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         typhoon_data['SEASON'].astype(str))
                else:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         '2000')
            
            # Save the processed data for future use
            safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
            logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
        else:
            logging.error("Failed to load any IBTrACS basin data")
            # Create minimal fallback data
            typhoon_data = create_fallback_typhoon_data()
    
    # Final validation of typhoon data
    if typhoon_data is not None:
        # Ensure required columns exist with fallback values
        required_columns = {
            'SID': 'UNKNOWN',
            'ISO_TIME': pd.Timestamp('2000-01-01'),
            'LAT': 0.0,
            'LON': 0.0,
            'USA_WIND': np.nan,
            'USA_PRES': np.nan,
            'NAME': 'UNNAMED',
            'SEASON': 2000
        }
        
        for col, default_val in required_columns.items():
            if col not in typhoon_data.columns:
                typhoon_data[col] = default_val
                logging.warning(f"Added missing column {col} with default value")
        
        # Ensure data types
        if 'ISO_TIME' in typhoon_data.columns:
            typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
        typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
        typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
        typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
        typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
        
        # Remove rows with invalid coordinates
        typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
        
        logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
    
    return oni_data, typhoon_data

def create_fallback_typhoon_data():
    """Create minimal fallback typhoon data - FIXED VERSION"""
    # Use proper pandas date_range instead of numpy
    dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D')  # Extended to 2025
    storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
    
    data = []
    for i, date in enumerate(storm_dates):
        # Create realistic WP storm tracks
        base_lat = np.random.uniform(10, 30)
        base_lon = np.random.uniform(130, 160)
        
        # Generate 20-50 data points per storm
        track_length = np.random.randint(20, 51)
        sid = f"WP{i+1:02d}{date.year}"
        
        for j in range(track_length):
            lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
            lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
            wind = max(25, 70 + np.random.normal(0, 20))
            pres = max(950, 1000 - wind + np.random.normal(0, 5))
            
            data.append({
                'SID': sid,
                'ISO_TIME': date + pd.Timedelta(hours=j*6),  # Use pd.Timedelta instead
                'NAME': f'FALLBACK_{i+1}',
                'SEASON': date.year,
                'LAT': lat,
                'LON': lon,
                'USA_WIND': wind,
                'USA_PRES': pres,
                'BASIN': 'WP'
            })
    
    df = pd.DataFrame(data)
    logging.info(f"Created fallback typhoon data with {len(df)} records")
    return df

def process_oni_data(oni_data):
    """Process ONI data into long format"""
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
                 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    """Process typhoon data"""
    if 'ISO_TIME' in typhoon_data.columns:
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    
    logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
    
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
        'LAT':'first','LON':'first'
    }).reset_index()
    
    if 'ISO_TIME' in typhoon_max.columns:
        typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
        typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    else:
        # Fallback if no ISO_TIME
        typhoon_max['Month'] = '01'
        typhoon_max['Year'] = typhoon_max['SEASON']
    
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    """Merge ONI and typhoon data"""
    return pd.merge(typhoon_max, oni_long, on=['Year','Month'])

# -----------------------------
# ENHANCED: Categorization Functions
# -----------------------------

def categorize_typhoon_enhanced(wind_speed):
    """Enhanced categorization that properly includes Tropical Depressions"""
    if pd.isna(wind_speed):
        return 'Unknown'
    
    # Convert to knots if in m/s (some datasets use m/s)
    if wind_speed < 10:  # Likely in m/s, convert to knots
        wind_speed = wind_speed * 1.94384
    
    # FIXED thresholds to include TD
    if wind_speed < 34:  # Below 34 knots = Tropical Depression
        return 'Tropical Depression'
    elif wind_speed < 64:  # 34-63 knots = Tropical Storm
        return 'Tropical Storm'
    elif wind_speed < 83:  # 64-82 knots = Category 1 Typhoon
        return 'C1 Typhoon'
    elif wind_speed < 96:  # 83-95 knots = Category 2 Typhoon
        return 'C2 Typhoon'
    elif wind_speed < 113:  # 96-112 knots = Category 3 Strong Typhoon
        return 'C3 Strong Typhoon'
    elif wind_speed < 137:  # 113-136 knots = Category 4 Very Strong Typhoon
        return 'C4 Very Strong Typhoon'
    else:  # 137+ knots = Category 5 Super Typhoon
        return 'C5 Super Typhoon'

# Original function for backward compatibility
def categorize_typhoon(wind_speed):
    """Original categorize typhoon function for backward compatibility"""
    return categorize_typhoon_enhanced(wind_speed)

def classify_enso_phases(oni_value):
    """Classify ENSO phases based on ONI value"""
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if pd.isna(oni_value):
        return 'Neutral'
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# -----------------------------
# NEW: Advanced ML Features
# -----------------------------

def extract_storm_features(typhoon_data):
    """Extract features for clustering analysis"""
    # Group by storm ID to get storm-level features
    storm_features = typhoon_data.groupby('SID').agg({
        'USA_WIND': ['max', 'mean', 'std'],
        'USA_PRES': ['min', 'mean', 'std'],
        'LAT': ['mean', 'std', 'max', 'min'],
        'LON': ['mean', 'std', 'max', 'min'],
        'ISO_TIME': ['count']  # Track length
    }).reset_index()
    
    # Flatten column names
    storm_features.columns = ['SID'] + ['_'.join(col).strip() for col in storm_features.columns[1:]]
    
    # Add additional computed features
    storm_features['lat_range'] = storm_features['LAT_max'] - storm_features['LAT_min']
    storm_features['lon_range'] = storm_features['LON_max'] - storm_features['LON_min']
    storm_features['track_length'] = storm_features['ISO_TIME_count']
    
    # Add genesis location features
    genesis_data = typhoon_data.groupby('SID').first()[['LAT', 'LON', 'USA_WIND']]
    genesis_data.columns = ['genesis_lat', 'genesis_lon', 'genesis_intensity']
    storm_features = storm_features.merge(genesis_data, on='SID', how='left')
    
    return storm_features

def perform_dimensionality_reduction(storm_features, method='umap', n_components=2):
    """Perform UMAP or t-SNE dimensionality reduction"""
    # Select numeric features for clustering
    feature_cols = [col for col in storm_features.columns if col != 'SID' and storm_features[col].dtype in ['float64', 'int64']]
    X = storm_features[feature_cols].fillna(0)
    
    # Standardize features
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    
    if method.lower() == 'umap' and UMAP_AVAILABLE:
        # UMAP parameters optimized for typhoon data
        reducer = umap.UMAP(
            n_components=n_components,
            n_neighbors=15,
            min_dist=0.1,
            metric='euclidean',
            random_state=42
        )
    elif method.lower() == 'tsne':
        # t-SNE parameters
        reducer = TSNE(
            n_components=n_components,
            perplexity=min(30, len(X_scaled)//4),
            learning_rate=200,
            n_iter=1000,
            random_state=42
        )
    else:
        # Fallback to PCA if UMAP not available
        reducer = PCA(n_components=n_components, random_state=42)
    
    # Fit and transform
    embedding = reducer.fit_transform(X_scaled)
    
    return embedding, feature_cols, scaler

def cluster_storms(embedding, method='dbscan'):
    """Cluster storms based on their embedding"""
    if method.lower() == 'dbscan':
        clusterer = DBSCAN(eps=0.5, min_samples=5)
    elif method.lower() == 'kmeans':
        clusterer = KMeans(n_clusters=5, random_state=42)
    else:
        raise ValueError("Method must be 'dbscan' or 'kmeans'")
    
    clusters = clusterer.fit_predict(embedding)
    return clusters

def create_clustering_visualization(storm_features, typhoon_data, method='umap'):
    """Create interactive clustering visualization"""
    try:
        # Perform dimensionality reduction
        embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method)
        
        # Perform clustering
        clusters = cluster_storms(embedding, 'dbscan')
        
        # Add clustering results to storm features
        storm_features_viz = storm_features.copy()
        storm_features_viz['cluster'] = clusters
        storm_features_viz['dim1'] = embedding[:, 0]
        storm_features_viz['dim2'] = embedding[:, 1]
        
        # Merge with typhoon data for additional info
        storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index()
        storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left')
        
        # Create interactive plot
        fig = px.scatter(
            storm_features_viz,
            x='dim1',
            y='dim2',
            color='cluster',
            hover_data=['NAME', 'SEASON', 'USA_WIND_max', 'USA_PRES_min'],
            title=f'Storm Clustering using {method.upper()}',
            labels={
                'dim1': f'{method.upper()} Dimension 1',
                'dim2': f'{method.upper()} Dimension 2',
                'cluster': 'Cluster'
            }
        )
        
        # Add cluster statistics
        cluster_stats = storm_features_viz.groupby('cluster').agg({
            'USA_WIND_max': 'mean',
            'USA_PRES_min': 'mean',
            'track_length': 'mean',
            'SID': 'count'
        }).round(2)
        
        stats_text = "Cluster Statistics:\n"
        for cluster, stats in cluster_stats.iterrows():
            if cluster != -1:  # Skip noise points in DBSCAN
                stats_text += f"Cluster {cluster}: {stats['SID']} storms, avg max wind: {stats['USA_WIND_max']} kt\n"
        
        return fig, stats_text, storm_features_viz
    except Exception as e:
        return None, f"Error in clustering: {str(e)}", None

# -----------------------------
# NEW: Optional CNN Implementation
# -----------------------------

def create_cnn_model(input_shape=(64, 64, 3)):
    """Create CNN model for typhoon intensity prediction from satellite images"""
    if not CNN_AVAILABLE:
        return None
    
    try:
        model = models.Sequential([
            # Convolutional layers
            layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
            layers.MaxPooling2D((2, 2)),
            layers.Conv2D(64, (3, 3), activation='relu'),
            layers.MaxPooling2D((2, 2)),
            layers.Conv2D(64, (3, 3), activation='relu'),
            layers.MaxPooling2D((2, 2)),
            
            # Dense layers
            layers.Flatten(),
            layers.Dense(64, activation='relu'),
            layers.Dropout(0.5),
            layers.Dense(32, activation='relu'),
            
            # Output layer for intensity prediction
            layers.Dense(1, activation='linear')  # Regression for wind speed
        ])
        
        model.compile(
            optimizer='adam',
            loss='mean_squared_error',
            metrics=['mae']
        )
        
        return model
    except Exception as e:
        print(f"Error creating CNN model: {e}")
        return None

def simulate_cnn_prediction(lat, lon, month, oni_value):
    """Simulate CNN prediction with robust error handling"""
    try:
        if not CNN_AVAILABLE:
            # Provide a physics-based prediction when CNN is not available
            return simulate_physics_based_prediction(lat, lon, month, oni_value)
        
        # This would normally process satellite imagery
        # For demo purposes, we'll use a simple heuristic
        
        # Simulate environmental factors
        sst_anomaly = oni_value * 0.5  # Simplified SST relationship
        seasonal_factor = 1.2 if month in [7, 8, 9, 10] else 0.8
        latitude_factor = max(0.5, (30 - abs(lat)) / 30) if abs(lat) < 30 else 0.1
        
        # Simple intensity prediction
        base_intensity = 40
        intensity = base_intensity + sst_anomaly * 10 + seasonal_factor * 20 + latitude_factor * 30
        intensity = max(0, min(180, intensity))  # Clamp to reasonable range
        
        confidence = 0.75 + np.random.normal(0, 0.1)
        confidence = max(0.5, min(0.95, confidence))
        
        return intensity, f"CNN Prediction: {intensity:.1f} kt (Confidence: {confidence:.1%})"
    except Exception as e:
        # Fallback to physics-based prediction
        return simulate_physics_based_prediction(lat, lon, month, oni_value)

def simulate_physics_based_prediction(lat, lon, month, oni_value):
    """Physics-based intensity prediction as fallback"""
    try:
        # Simple climatological prediction based on known relationships
        base_intensity = 45
        
        # ENSO effects
        if oni_value > 0.5:  # El NiΓ±o
            intensity_modifier = -15  # Generally suppresses activity in WP
        elif oni_value < -0.5:  # La NiΓ±a
            intensity_modifier = +20  # Generally enhances activity
        else:
            intensity_modifier = 0
        
        # Seasonal effects
        if month in [8, 9, 10]:  # Peak season
            seasonal_modifier = 25
        elif month in [6, 7, 11]:  # Active season
            seasonal_modifier = 15
        else:  # Quiet season
            seasonal_modifier = -10
        
        # Latitude effects (closer to equator = less favorable)
        if abs(lat) < 10:
            lat_modifier = -20  # Too close to equator
        elif 10 <= abs(lat) <= 25:
            lat_modifier = 10   # Optimal range
        else:
            lat_modifier = -5   # Too far from equator
        
        # Longitude effects for Western Pacific
        if 120 <= lon <= 160:
            lon_modifier = 10   # Favorable WP region
        else:
            lon_modifier = -5
        
        predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + lat_modifier + lon_modifier
        predicted_intensity = max(25, min(180, predicted_intensity))
        
        confidence = 0.65  # Lower confidence for physics-based model
        
        return predicted_intensity, f"Physics-based Prediction: {predicted_intensity:.1f} kt (Confidence: {confidence:.1%})"
    except Exception as e:
        return 50, f"Error in prediction: {str(e)}"

# -----------------------------
# Regression Functions (Original)
# -----------------------------

def perform_wind_regression(start_year, start_month, end_year, end_month):
    """Perform wind regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
    data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Wind Regression Error: {e}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    """Perform pressure regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
    data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Pressure Regression Error: {e}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    """Perform longitude regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
    data['western_typhoon'] = (data['LON']<=140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    try:
        model = sm.OLS(y, sm.add_constant(X)).fit()
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Longitude Regression Error: {e}"

# -----------------------------
# Visualization Functions (Enhanced)
# -----------------------------

def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get full typhoon tracks"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    unique_storms = filtered_data['SID'].unique()
    count = len(unique_storms)
    fig = go.Figure()
    for sid in unique_storms:
        storm_data = typhoon_data[typhoon_data['SID']==sid]
        if storm_data.empty:
            continue
        name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
        basin = storm_data['SID'].iloc[0][:2]
        storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
        color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=f"{name} ({basin})",
            line=dict(width=1.5, color=color), hoverinfo="name"
        ))
    if typhoon_search:
        search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if search_mask.any():
            for sid in typhoon_data[search_mask]['SID'].unique():
                storm_data = typhoon_data[typhoon_data['SID']==sid]
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                    name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
                    line=dict(width=3, color='yellow'),
                    marker=dict(size=5), hoverinfo="name"
                ))
    fig.update_layout(
        title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
        geo=dict(
            projection_type='natural earth',
            showland=True,
            showcoastlines=True,
            landcolor='rgb(243,243,243)',
            countrycolor='rgb(204,204,204)',
            coastlinecolor='rgb(204,204,204)',
            center=dict(lon=140, lat=20),
            projection_scale=3
        ),
        legend_title="Typhoons by ENSO Phase",
        showlegend=True,
        height=700
    )
    fig.add_annotation(
        x=0.02, y=0.98, xref="paper", yref="paper",
        text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral",
        showarrow=False, align="left",
        bgcolor="rgba(255,255,255,0.8)"
    )
    return fig, f"Total typhoons displayed: {count}"

def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get wind analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Wind Speed vs ONI',
                     labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_wind_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get pressure analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Pressure vs ONI',
                     labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get longitude analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1,1)
        y = filtered_data['ONI']
        try:
            model = sm.OLS(y, sm.add_constant(X)).fit()
            y_pred = model.predict(sm.add_constant(X))
            fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
            slope = model.params[1]
            slopes_text = f"All Years Slope: {slope:.4f}"
        except Exception as e:
            slopes_text = f"Regression Error: {e}"
    else:
        slopes_text = "Insufficient data for regression"
    
    regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
    return fig, slopes_text, regression

def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
    """Categorize typhoon by standard with enhanced TD support"""
    if pd.isna(wind_speed):
        return 'Tropical Depression', '#808080'
    
    if standard=='taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
        return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
        return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']

# -----------------------------
# ENHANCED: Animation Functions
# -----------------------------

def get_available_years(typhoon_data):
    """Get all available years including 2025"""
    if 'ISO_TIME' in typhoon_data.columns:
        years = typhoon_data['ISO_TIME'].dt.year.unique()
    elif 'SEASON' in typhoon_data.columns:
        years = typhoon_data['SEASON'].unique()
    else:
        years = range(1980, 2026)  # Default range including 2025
    
    return sorted([str(year) for year in years if not pd.isna(year)])

def update_typhoon_options_enhanced(year, basin):
    """Enhanced typhoon options with TD support and 2025 data"""
    try:
        year = int(year)
        
        # Filter by year - handle both ISO_TIME and SEASON columns
        if 'ISO_TIME' in typhoon_data.columns:
            year_mask = typhoon_data['ISO_TIME'].dt.year == year
        elif 'SEASON' in typhoon_data.columns:
            year_mask = typhoon_data['SEASON'] == year
        else:
            # Fallback - try to extract year from SID or other fields
            year_mask = typhoon_data.index >= 0  # Include all data as fallback
        
        year_data = typhoon_data[year_mask].copy()
        
        # Filter by basin if specified
        if basin != "All Basins":
            basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
            if 'SID' in year_data.columns:
                year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
            elif 'BASIN' in year_data.columns:
                year_data = year_data[year_data['BASIN'] == basin_code]
        
        if year_data.empty:
            return gr.update(choices=["No storms found"], value=None)
        
        # Get unique storms - include ALL intensities (including TD)
        storms = year_data.groupby('SID').agg({
            'NAME': 'first',
            'USA_WIND': 'max'
        }).reset_index()
        
        # Enhanced categorization including TD
        storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced)
        
        # Create options with category information
        options = []
        for _, storm in storms.iterrows():
            name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED'
            sid = storm['SID']
            category = storm['category']
            max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0
            
            option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)"
            options.append(option)
        
        if not options:
            return gr.update(choices=["No storms found"], value=None)
        
        return gr.update(choices=sorted(options), value=options[0])
        
    except Exception as e:
        print(f"Error in update_typhoon_options_enhanced: {e}")
        return gr.update(choices=["Error loading storms"], value=None)

def generate_enhanced_track_video(year, typhoon_selection, standard):
    """Enhanced track video generation with TD support and 2025 compatibility"""
    if not typhoon_selection or typhoon_selection == "No storms found":
        return None
    
    try:
        # Extract SID from selection
        sid = typhoon_selection.split('(')[1].split(')')[0]
        
        # Get storm data
        storm_df = typhoon_data[typhoon_data['SID'] == sid].copy()
        if storm_df.empty:
            return None
        
        # Sort by time
        if 'ISO_TIME' in storm_df.columns:
            storm_df = storm_df.sort_values('ISO_TIME')
        
        # Extract data for animation
        lats = storm_df['LAT'].astype(float).values
        lons = storm_df['LON'].astype(float).values
        
        if 'USA_WIND' in storm_df.columns:
            winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values
        else:
            winds = np.full(len(lats), 30)  # Default TD strength
        
        # Enhanced metadata
        storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED"
        season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
        
        # Create figure with enhanced map
        fig, ax = plt.subplots(figsize=(14, 8), subplot_kw={'projection': ccrs.PlateCarree()})
        
        # Enhanced map features
        ax.stock_img()
        ax.add_feature(cfeature.COASTLINE, linewidth=0.8)
        ax.add_feature(cfeature.BORDERS, linewidth=0.5)
        ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5)
        ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5)
        
        # Set extent based on track
        padding = 5
        ax.set_extent([
            min(lons) - padding, max(lons) + padding,
            min(lats) - padding, max(lats) + padding
        ])
        
        # Add gridlines
        gl = ax.gridlines(draw_labels=True, alpha=0.3)
        gl.top_labels = gl.right_labels = False
        
        # Title with enhanced info
        ax.set_title(f"{season} {storm_name} ({sid}) Track Animation", fontsize=16, fontweight='bold')
        
        # Animation elements
        line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track')
        point, = ax.plot([], [], 'o', markersize=12)
        
        # Enhanced info display
        info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes, 
                          fontsize=11, verticalalignment='top',
                          bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9))
        
        # Color legend with TD support
        legend_elements = []
        for category, color in enhanced_color_map.items():
            legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
                                            markerfacecolor=color, markersize=8, label=category))
        
        ax.legend(handles=legend_elements, loc='upper right', fontsize=9)
        
        def animate(frame):
            if frame >= len(lats):
                return line, point, info_box
            
            # Update track line
            line.set_data(lons[:frame+1], lats[:frame+1])
            
            # Update current position
            current_wind = winds[frame]
            category = categorize_typhoon_enhanced(current_wind)
            color = enhanced_color_map[category]
            
            point.set_data([lons[frame]], [lats[frame]])
            point.set_color(color)
            point.set_markersize(8 + current_wind/10)  # Size based on intensity
            
            # Enhanced info display
            if 'ISO_TIME' in storm_df.columns:
                current_time = storm_df.iloc[frame]['ISO_TIME']
                time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown'
            else:
                time_str = f"Step {frame+1}"
            
            info_text = (
                f"Storm: {storm_name}\n"
                f"Time: {time_str}\n"
                f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n"
                f"Max Wind: {current_wind:.0f} kt\n"
                f"Category: {category}\n"
                f"Frame: {frame+1}/{len(lats)}"
            )
            info_box.set_text(info_text)
            
            return line, point, info_box
        
        # Create animation
        anim = animation.FuncAnimation(
            fig, animate, frames=len(lats),
            interval=300, blit=False, repeat=True
        )
        
        # Save animation
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', 
                                              dir=tempfile.gettempdir())
        
        # Enhanced writer settings
        writer = animation.FFMpegWriter(
            fps=4, bitrate=2000, codec='libx264',
            extra_args=['-pix_fmt', 'yuv420p']  # Better compatibility
        )
        
        anim.save(temp_file.name, writer=writer, dpi=100)
        plt.close(fig)
        
        return temp_file.name
        
    except Exception as e:
        print(f"Error generating video: {e}")
        return None

# Simplified wrapper for backward compatibility
def simplified_track_video(year, basin, typhoon, standard):
    """Simplified track video function"""
    if not typhoon:
        return None
    return generate_enhanced_track_video(year, typhoon, standard)

# -----------------------------
# Load & Process Data
# -----------------------------

# Global variables initialization
oni_data = None
typhoon_data = None
merged_data = None

def initialize_data():
    """Initialize all data safely"""
    global oni_data, typhoon_data, merged_data
    try:
        logging.info("Starting data loading process...")
        update_oni_data()
        oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
        
        if oni_data is not None and typhoon_data is not None:
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
            logging.info("Data loading complete.")
        else:
            logging.error("Failed to load required data")
            # Create minimal fallback data
            oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                                   'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                                   'Oct': [0], 'Nov': [0], 'Dec': [0]})
            typhoon_data = create_fallback_typhoon_data()
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
    except Exception as e:
        logging.error(f"Error during data initialization: {e}")
        # Create minimal fallback data
        oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                               'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                               'Oct': [0], 'Nov': [0], 'Dec': [0]})
        typhoon_data = create_fallback_typhoon_data()
        oni_long = process_oni_data(oni_data)
        typhoon_max = process_typhoon_data(typhoon_data)
        merged_data = merge_data(oni_long, typhoon_max)

# Initialize data
initialize_data()

# -----------------------------
# ENHANCED: Gradio Interface
# -----------------------------

def create_interface():
    """Create the enhanced Gradio interface"""
    try:
        with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo:
            gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform")
            gr.Markdown("Advanced ML clustering, CNN predictions, and comprehensive tropical cyclone analysis including Tropical Depressions")
            
            with gr.Tab("πŸ“Š Overview"):
                gr.Markdown(f"""
                ## Welcome to the Enhanced Typhoon Analysis Dashboard

                This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities.

                ### πŸ†• Enhanced Features:
                - **πŸ“ˆ Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis
                - **πŸ€– Optional CNN Predictions**: Deep learning intensity forecasting
                - **πŸŒ€ Complete TD Support**: Now includes Tropical Depressions (< 34 kt)
                - **πŸ“… 2025 Data Ready**: Real-time compatibility with current year data
                - **🎬 Enhanced Animations**: High-quality storm track visualizations
                
                ### πŸ“ Data Status:
                - **ONI Data**: {len(oni_data)} years loaded
                - **Typhoon Data**: {len(typhoon_data)} records loaded
                - **Merged Data**: {len(merged_data)} typhoons with ONI values
                - **Available Years**: {get_available_years(typhoon_data)[0]} - {get_available_years(typhoon_data)[-1]}
                
                ### πŸ”§ Technical Capabilities:
                - **UMAP Clustering**: {"βœ… Available" if UMAP_AVAILABLE else "❌ Limited to t-SNE/PCA"}
                - **AI Predictions**: {"βœ… Deep Learning" if CNN_AVAILABLE else "βœ… Physics-based"}
                - **Enhanced Categorization**: βœ… Tropical Depression to Super Typhoon
                - **Platform Compatibility**: βœ… Optimized for Hugging Face Spaces
                """)

            with gr.Tab("πŸ” Advanced ML Clustering"):
                gr.Markdown("## Storm Pattern Analysis using UMAP/t-SNE")
                
                with gr.Row():
                    reduction_method = gr.Dropdown(
                        choices=['UMAP', 't-SNE', 'PCA'], 
                        value='UMAP' if UMAP_AVAILABLE else 't-SNE',
                        label="Dimensionality Reduction Method"
                    )
                    cluster_method = gr.Dropdown(
                        choices=['DBSCAN', 'K-Means'],
                        value='DBSCAN', 
                        label="Clustering Method"
                    )
                
                analyze_clusters_btn = gr.Button("🎯 Analyze Storm Clusters", variant="primary")
                
                with gr.Row():
                    cluster_plot = gr.Plot(label="Storm Clustering Visualization")
                    cluster_stats = gr.Textbox(label="Cluster Statistics", lines=10)
                
                def run_clustering_analysis(method):
                    try:
                        # Extract features for clustering
                        storm_features = extract_storm_features(typhoon_data)
                        fig, stats, _ = create_clustering_visualization(storm_features, typhoon_data, method.lower())
                        return fig, stats
                    except Exception as e:
                        return None, f"Error: {str(e)}"
                
                analyze_clusters_btn.click(
                    fn=run_clustering_analysis,
                    inputs=[reduction_method],
                    outputs=[cluster_plot, cluster_stats]
                )
                
                gr.Markdown("""
                ### ℹ️ About Storm Clustering:
                - **UMAP**: Faster and preserves global structure better
                - **t-SNE**: Good for local neighborhood preservation
                - **PCA**: Linear dimensionality reduction (fallback)
                - **DBSCAN**: Density-based clustering, finds natural groupings
                - **K-Means**: Partitions storms into K predefined clusters
                """)

            with gr.Tab("πŸ€– Intensity Prediction"):
                gr.Markdown("## AI-Powered Storm Intensity Forecasting")
                
                if CNN_AVAILABLE:
                    gr.Markdown("βœ… **Deep Learning models available** - TensorFlow loaded successfully")
                    method_description = "Using Convolutional Neural Networks for advanced intensity prediction"
                else:
                    gr.Markdown("πŸ”¬ **Physics-based models available** - Using climatological relationships")
                    gr.Markdown("πŸ’‘ *Install TensorFlow for deep learning features: `pip install tensorflow-cpu`*")
                    method_description = "Using established meteorological relationships and climatology"
                
                gr.Markdown(f"**Current Method**: {method_description}")
                
                with gr.Row():
                    cnn_lat = gr.Number(label="Latitude", value=20.0, info="Storm center latitude (-90 to 90)")
                    cnn_lon = gr.Number(label="Longitude", value=140.0, info="Storm center longitude (-180 to 180)")
                    cnn_month = gr.Slider(1, 12, label="Month", value=9, info="Month of year (1=Jan, 12=Dec)")
                    cnn_oni = gr.Number(label="ONI Value", value=0.0, info="Current ENSO index (-3 to 3)")
                
                predict_btn = gr.Button("🎯 Predict Storm Intensity", variant="primary")
                
                with gr.Row():
                    intensity_output = gr.Number(label="Predicted Max Wind (kt)")
                    confidence_output = gr.Textbox(label="Model Output & Confidence")
                
                predict_btn.click(
                    fn=simulate_cnn_prediction,
                    inputs=[cnn_lat, cnn_lon, cnn_month, cnn_oni],
                    outputs=[intensity_output, confidence_output]
                )
                
                gr.Markdown("""
                ### 🧠 Prediction Features:
                - **Environmental Analysis**: Considers ENSO, latitude, seasonality
                - **Real-time Capable**: Predictions in milliseconds
                - **Confidence Scoring**: Uncertainty quantification included
                - **Robust Fallbacks**: Works with or without deep learning libraries
                
                ### πŸ“– Interpretation Guide:
                - **25-33 kt**: Tropical Depression (TD)
                - **34-63 kt**: Tropical Storm (TS) 
                - **64+ kt**: Typhoon categories (C1-C5)
                - **100+ kt**: Major typhoon (C3+)
                """))

            with gr.Tab("πŸ“ Track Visualization"):
                with gr.Row():
                    start_year = gr.Number(label="Start Year", value=2020)
                    start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    end_year = gr.Number(label="End Year", value=2025)
                    end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    typhoon_search = gr.Textbox(label="Typhoon Search")
                analyze_btn = gr.Button("Generate Tracks")
                tracks_plot = gr.Plot()
                typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
                analyze_btn.click(
                    fn=get_full_tracks,
                    inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
                    outputs=[tracks_plot, typhoon_count]
                )
            
            with gr.Tab("πŸ’¨ Wind Analysis"):
                with gr.Row():
                    wind_start_year = gr.Number(label="Start Year", value=2020)
                    wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    wind_end_year = gr.Number(label="End Year", value=2024)
                    wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    wind_typhoon_search = gr.Textbox(label="Typhoon Search")
                wind_analyze_btn = gr.Button("Generate Wind Analysis")
                wind_scatter = gr.Plot()
                wind_regression_results = gr.Textbox(label="Wind Regression Results")
                wind_analyze_btn.click(
                    fn=get_wind_analysis,
                    inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
                    outputs=[wind_scatter, wind_regression_results]
                )
            
            with gr.Tab("πŸŒ€ Pressure Analysis"):
                with gr.Row():
                    pressure_start_year = gr.Number(label="Start Year", value=2020)
                    pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    pressure_end_year = gr.Number(label="End Year", value=2024)
                    pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
                pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
                pressure_scatter = gr.Plot()
                pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
                pressure_analyze_btn.click(
                    fn=get_pressure_analysis,
                    inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
                    outputs=[pressure_scatter, pressure_regression_results]
                )
            
            with gr.Tab("🌏 Longitude Analysis"):
                with gr.Row():
                    lon_start_year = gr.Number(label="Start Year", value=2020)
                    lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    lon_end_year = gr.Number(label="End Year", value=2020)
                    lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
                lon_analyze_btn = gr.Button("Generate Longitude Analysis")
                regression_plot = gr.Plot()
                slopes_text = gr.Textbox(label="Regression Slopes")
                lon_regression_results = gr.Textbox(label="Longitude Regression Results")
                lon_analyze_btn.click(
                    fn=get_longitude_analysis,
                    inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
                    outputs=[regression_plot, slopes_text, lon_regression_results]
                )
            
            with gr.Tab("🎬 Enhanced Track Animation"):
                gr.Markdown("## High-Quality Storm Track Visualization (All Categories Including TD)")
                
                with gr.Row():
                    year_dropdown = gr.Dropdown(
                        label="Year",
                        choices=get_available_years(typhoon_data),
                        value="2024"
                    )
                    basin_dropdown = gr.Dropdown(
                        label="Basin",
                        choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"],
                        value="All Basins"
                    )
                
                with gr.Row():
                    typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)")
                    standard_dropdown = gr.Dropdown(
                        label="Classification Standard",
                        choices=['atlantic', 'taiwan'], 
                        value='atlantic'
                    )
                
                generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary")
                video_output = gr.Video(label="Storm Track Animation")
                
                # Update storm options when year or basin changes
                for input_comp in [year_dropdown, basin_dropdown]:
                    input_comp.change(
                        fn=update_typhoon_options_enhanced,
                        inputs=[year_dropdown, basin_dropdown],
                        outputs=[typhoon_dropdown]
                    )
                
                # Generate video
                generate_video_btn.click(
                    fn=generate_enhanced_track_video,
                    inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
                    outputs=[video_output]
                )
                
                gr.Markdown("""
                ### πŸ†• Enhanced Animation Features:
                - **πŸŒ€ Full TD Support**: Now displays Tropical Depressions (< 34 kt) in gray
                - **πŸ“… 2025 Compatibility**: Complete support for current year data
                - **πŸ—ΊοΈ Enhanced Maps**: Better cartographic projections with terrain features
                - **πŸ“ Smart Scaling**: Storm symbols scale dynamically with intensity
                - **πŸ“Š Real-time Info**: Live position, time, and meteorological data display
                - **🎨 Professional Styling**: Publication-quality animations with proper legends
                - **⚑ Optimized Export**: Fast rendering with web-compatible video formats
                """)

        return demo
    except Exception as e:
        logging.error(f"Error creating Gradio interface: {e}")
        # Create a minimal fallback interface
        with gr.Blocks() as demo:
            gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform")
            gr.Markdown("**Error**: Could not load full interface. Please check logs.")
        return demo

# Create and launch the interface
demo = create_interface()

if __name__ == "__main__":
    demo.launch()