File size: 32,807 Bytes
7fa25f7
efb47b3
 
 
 
a2d2271
efb47b3
 
 
 
 
 
a2d2271
 
 
efb47b3
 
 
 
a2d2271
 
 
efb47b3
a2d2271
eb8c873
 
 
 
 
a2d2271
efb47b3
 
a2d2271
eb8c873
efb47b3
 
 
a2d2271
 
 
 
 
 
 
 
 
 
eb8c873
a2d2271
 
 
 
 
 
 
 
 
 
eb8c873
a2d2271
 
 
 
 
efb47b3
 
a2d2271
eb8c873
 
 
 
 
 
 
a2d2271
eb8c873
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
 
 
 
eb8c873
 
 
 
 
a2d2271
eb8c873
 
 
a2d2271
eb8c873
 
 
 
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
 
 
 
 
 
 
 
 
efb47b3
a2d2271
eb8c873
 
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
 
 
a2d2271
 
 
eb8c873
 
 
a2d2271
 
eb8c873
 
 
 
 
 
 
 
 
 
a2d2271
eb8c873
 
 
 
 
 
 
 
 
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
 
 
 
a2d2271
 
eb8c873
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
 
 
 
 
 
 
 
 
 
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
efb47b3
eb8c873
efb47b3
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
from datetime import datetime
from scipy import stats
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
import statsmodels.api as sm
import tropycal.tracks as tracks
import os
import pickle
import requests
import tempfile
import shutil
import filecmp
import csv
from collections import defaultdict
import argparse

# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path

# File paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1

# Color map for categories
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
    'C3 Strong Typhoon': 'rgb(255, 127, 0)',
    'C2 Typhoon': 'rgb(255, 191, 0)',
    'C1 Typhoon': 'rgb(255, 255, 0)',
    'Tropical Storm': 'rgb(0, 255, 255)',
    'Tropical Depression': 'rgb(173, 216, 230)'
}

# Classification standards
atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}

taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}

# Data loading and processing functions (unchanged from Dash)
def convert_typhoondata(input_file, output_file):
    with open(input_file, 'r') as infile:
        next(infile)
        next(infile)
        reader = csv.reader(infile)
        sid_data = defaultdict(list)
        for row in reader:
            if not row:
                continue
            sid = row[0]
            iso_time = row[6]
            sid_data[sid].append((row, iso_time))
    with open(output_file, 'w', newline='') as outfile:
        fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
        writer = csv.DictWriter(outfile, fieldnames=fieldnames)
        writer.writeheader()
        for sid, data in sid_data.items():
            start_date = min(data, key=lambda x: x[1])[1]
            end_date = max(data, key=lambda x: x[1])[1]
            for row, iso_time in data:
                writer.writerow({
                    'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
                    'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
                    'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
                    'START_DATE': start_date, 'END_DATE': end_date
                })

def download_oni_file(url, filename):
    try:
        response = requests.get(url)
        response.raise_for_status()
        with open(filename, 'wb') as f:
            f.write(response.content)
        return True
    except requests.RequestException:
        return False

def convert_oni_ascii_to_csv(input_file, output_file):
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, 'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
    with open(input_file, 'r') as f:
        lines = f.readlines()[1:]
        for line in lines:
            parts = line.split()
            if len(parts) >= 4:
                season, year, anom = parts[0], parts[1], parts[-1]
                if season in season_to_month:
                    month = season_to_month[season]
                    if season == 'DJF':
                        year = str(int(year) - 1)
                    data[year][month-1] = anom
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
        for year in sorted(data.keys()):
            writer.writerow([year] + data[year])

def update_oni_data():
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    if download_oni_file(url, temp_file):
        if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
            os.replace(temp_file, input_file)
            convert_oni_ascii_to_csv(input_file, output_file)
        else:
            os.remove(temp_file)

def load_ibtracs_data():
    if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
        with open(CACHE_FILE, 'rb') as f:
            return pickle.load(f)
    if os.path.exists(LOCAL_iBtrace_PATH):
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    else:
        response = requests.get(iBtrace_uri)
        response.raise_for_status()
        with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
            temp_file.write(response.text)
            temp_file_path = temp_file.name
        shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    with open(CACHE_FILE, 'wb') as f:
        pickle.dump(ibtracs, f)
    return ibtracs

def process_oni_data(oni_data):
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first', 'LAT': 'first', 'LON': 'first'
    }).reset_index()
    typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
    typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])

def categorize_typhoon(wind_speed):
    wind_speed_kt = wind_speed / 2
    if wind_speed_kt >= 137/2.35:
        return 'C5 Super Typhoon'
    elif wind_speed_kt >= 113/2.35:
        return 'C4 Very Strong Typhoon'
    elif wind_speed_kt >= 96/2.35:
        return 'C3 Strong Typhoon'
    elif wind_speed_kt >= 83/2.35:
        return 'C2 Typhoon'
    elif wind_speed_kt >= 64/2.35:
        return 'C1 Typhoon'
    elif wind_speed_kt >= 34/2.35:
        return 'Tropical Storm'
    else:
        return 'Tropical Depression'

def classify_enso_phases(oni_value):
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

def filter_west_pacific_coordinates(lons, lats):
    mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
    return lons[mask], lats[mask]

def get_storm_data(storm_id):
    return ibtracs.get_storm(storm_id)

# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data = pd.read_csv(ONI_DATA_PATH)
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
oni_df = pd.read_csv(ONI_DATA_PATH, index_col='Date', parse_dates=True)

# Main Analysis Function
def main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
    filtered_data = merged_data[(merged_data['Year'] >= start_year) & (merged_data['Year'] <= end_year) & 
                               (merged_data['Month'].astype(int) >= start_month) & (merged_data['Month'].astype(int) <= end_month)]

    # Typhoon Tracks
    fig_tracks = go.Figure()
    regression_data = {'El Nino': {'longitudes': [], 'oni_values': [], 'names': []}, 'La Nina': {'longitudes': [], 'oni_values': [], 'names': []},
                       'Neutral': {'longitudes': [], 'oni_values': [], 'names': []}, 'All': {'longitudes': [], 'oni_values': [], 'names': []}}
    for year in range(start_year, end_year + 1):
        season = ibtracs.get_season(year)
        for storm_id in season.summary()['id']:
            storm = get_storm_data(storm_id)
            storm_dates = storm.time
            if any(start_date <= date <= end_date for date in storm_dates):
                storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
                if isinstance(storm_oni, pd.Series):
                    storm_oni = storm_oni.iloc[0]
                phase = classify_enso_phases(storm_oni)
                regression_data[phase]['longitudes'].append(storm.lon[0])
                regression_data[phase]['oni_values'].append(storm_oni)
                regression_data[phase]['names'].append(f'{storm.name} ({year})')
                regression_data['All']['longitudes'].append(storm.lon[0])
                regression_data['All']['oni_values'].append(storm_oni)
                regression_data['All']['names'].append(f'{storm.name} ({year})')
                if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and phase == 'El Nino') or
                    (enso_phase == 'La Niña Years' and phase == 'La Nina') or (enso_phase == 'Neutral Years' and phase == 'Neutral')):
                    color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
                    fig_tracks.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', name=storm.name,
                                                       text=f'{storm.name} ({year})', hoverinfo='text', line=dict(width=2, color=color)))
    fig_tracks.update_layout(title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}', geo=dict(projection_type='natural earth', showland=True))

    # All Years Regression
    all_years_fig = go.Figure()
    df_all = pd.DataFrame({'Longitude': regression_data['All']['longitudes'], 'ONI': regression_data['All']['oni_values'], 'Name': regression_data['All']['names']})
    if not df_all.empty and len(df_all) > 1:
        all_years_fig = px.scatter(df_all, x='Longitude', y='ONI', hover_data=['Name'], title='All Years Typhoon Generation vs. ONI')
        X = np.array(df_all['Longitude']).reshape(-1, 1)
        y = df_all['ONI']
        model = LinearRegression().fit(X, y)
        y_pred = model.predict(X)
        all_years_fig.add_trace(go.Scatter(x=df_all['Longitude'], y=y_pred, mode='lines', name='Regression Line'))

    # Regression Graphs by Phase
    regression_html = ""
    slopes_html = ""
    for phase in ['El Nino', 'La Nina', 'Neutral']:
        df = pd.DataFrame({'Longitude': regression_data[phase]['longitudes'], 'ONI': regression_data[phase]['oni_values'], 'Name': regression_data[phase]['names']})
        if not df.empty and len(df) > 1:
            fig = px.scatter(df, x='Longitude', y='ONI', hover_data=['Name'], title=f'{phase} Typhoon Generation vs. ONI')
            X = np.array(df['Longitude']).reshape(-1, 1)
            y = df['ONI']
            model = LinearRegression().fit(X, y)
            y_pred = model.predict(X)
            slope = model.coef_[0]
            correlation_coef = np.corrcoef(df['Longitude'], df['ONI'])[0, 1]
            fig.add_trace(go.Scatter(x=df['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
            regression_html += fig.to_html(include_plotlyjs=False)
            slopes_html += f"<p>{phase} Regression Slope: {slope:.4f}, Correlation Coefficient: {correlation_coef:.4f}</p>"

    # Wind and Pressure Scatter Plots
    wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
                                  title='Wind Speed vs ONI', labels={'USA_WIND': 'Maximum Wind Speed (knots)'}, color_discrete_map=color_map)
    pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
                                      title='Pressure vs ONI', labels={'USA_PRES': 'Minimum Pressure (hPa)'}, color_discrete_map=color_map)
    if typhoon_search:
        for fig in [wind_oni_scatter, pressure_oni_scatter]:
            mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
            fig.add_trace(go.Scatter(x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
                                     mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}'))

    # Additional Metrics
    max_wind_speed = filtered_data['USA_WIND'].max()
    min_pressure = filtered_data['USA_PRES'].min()
    typhoon_counts = filtered_data['ONI'].apply(classify_enso_phases).value_counts().to_dict()
    month_counts = filtered_data.groupby([filtered_data['ONI'].apply(classify_enso_phases), filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
    concentrated_months = month_counts.idxmax(axis=1).to_dict()
    month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
    count_analysis_html = "".join([f"<p>{phase}: {count} typhoons</p>" for phase, count in typhoon_counts.items()])
    month_analysis_html = "".join([f"<p>{phase}: Most concentrated in {month_names[month-1]}</p>" for phase, month in concentrated_months.items()])

    return (fig_tracks, all_years_fig, regression_html, slopes_html, wind_oni_scatter, pressure_oni_scatter,
            "Logistic Regression Results: See Logistic Regression Tab", f"Maximum Wind Speed: {max_wind_speed:.2f} knots",
            f"Minimum Pressure: {min_pressure:.2f} hPa", "Wind-ONI correlation: See Logistic Regression Tab",
            "Pressure-ONI correlation: See Logistic Regression Tab", count_analysis_html, month_analysis_html)

# Cluster Analysis Function
def cluster_analysis(n_clusters, show_clusters, show_routes, fourier_series, start_year, start_month, end_year, end_month, enso_phase):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
    fig_routes = go.Figure()
    west_pacific_storms = []
    for year in range(start_year, end_year + 1):
        season = ibtracs.get_season(year)
        for storm_id in season.summary()['id']:
            storm = get_storm_data(storm_id)
            storm_date = storm.time[0]
            storm_oni = filtered_oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
            if isinstance(storm_oni, pd.Series):
                storm_oni = storm_oni.iloc[0]
            storm_phase = classify_enso_phases(storm_oni)
            if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and storm_phase == 'El Nino') or
                (enso_phase == 'La Niña Years' and storm_phase == 'La Nina') or (enso_phase == 'Neutral Years' and storm_phase == 'Neutral')):
                lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
                if len(lons) > 1:
                    west_pacific_storms.append((lons, lats))

    max_length = max(len(storm[0]) for storm in west_pacific_storms)
    standardized_routes = []
    for lons, lats in west_pacific_storms:
        if len(lons) < 2:
            continue
        t = np.linspace(0, 1, len(lons))
        t_new = np.linspace(0, 1, max_length)
        lon_interp = interp1d(t, lons, kind='linear')(t_new)
        lat_interp = interp1d(t, lats, kind='linear')(t_new)
        route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
        standardized_routes.append(route_vector)

    kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
    clusters = kmeans.fit_predict(standardized_routes)
    cluster_counts = np.bincount(clusters)
    equations_html = ""
    if show_routes:
        for lons, lats in west_pacific_storms:
            fig_routes.add_trace(go.Scattergeo(lon=lons, lat=lats, mode='lines', line=dict(width=1, color='lightgray'), showlegend=False, hoverinfo='none'))
    if show_clusters:
        for i in range(n_clusters):
            cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
            fig_routes.add_trace(go.Scattergeo(lon=cluster_center[:, 0], lat=cluster_center[:, 1], mode='lines', name=f'Cluster {i+1} (n={cluster_counts[i]})', line=dict(width=3)))
            if fourier_series:
                X = cluster_center[:, 0]
                y = cluster_center[:, 1]
                x_min, x_max = X.min(), X.max()
                X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
                params, _ = curve_fit(lambda x, a0, a1, b1, a2, b2, a3, b3, a4, b4: a0 + a1*np.cos(x) + b1*np.sin(x) +
                                      a2*np.cos(2*x) + b2*np.sin(2*x) + a3*np.cos(3*x) + b3*np.sin(3*x) + a4*np.cos(4*x) + b4*np.sin(4*x),
                                      X_normalized, y)
                a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
                equations_html += f"<h4>Cluster {i+1} (Typhoons: {cluster_counts[i]})</h4><p>Fourier Series: y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + " \
                                  f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + {a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + {a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)</p>" \
                                  f"<p>X Range: 0 to {2*np.pi:.4f}</p><p>Longitude Range: {x_min:.4f}°E to {x_max:.4f}°E</p><hr>"

    fig_routes.update_layout(title=f'Typhoon Routes Clustering ({start_year}-{end_year}) - {enso_phase}', geo=dict(projection_type='mercator', showland=True,
                                                                                                                lataxis={'range': [0, 40]}, lonaxis={'range': [100, 180]}))
    return fig_routes, equations_html

# Logistic Regression Functions
def logistic_regression(regression_type, start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)]
    if regression_type == 'Wind':
        filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int)
        X = sm.add_constant(filtered_data['ONI'])
        y = filtered_data['severe_typhoon']
        model = sm.Logit(y, X).fit()
        beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
        el_nino_severe = filtered_data[filtered_data['ONI'] >= 0.5]['severe_typhoon'].mean()
        la_nina_severe = filtered_data[filtered_data['ONI'] <= -0.5]['severe_typhoon'].mean()
        neutral_severe = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['severe_typhoon'].mean()
        return f"<h3>Wind Speed Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
               f"<p>El Niño: {el_nino_severe:.2%}</p><p>La Niña: {la_nina_severe:.2%}</p><p>Neutral: {neutral_severe:.2%}</p>"
    elif regression_type == 'Pressure':
        filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int)
        X = sm.add_constant(filtered_data['ONI'])
        y = filtered_data['intense_typhoon']
        model = sm.Logit(y, X).fit()
        beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
        el_nino_intense = filtered_data[filtered_data['ONI'] >= 0.5]['intense_typhoon'].mean()
        la_nina_intense = filtered_data[filtered_data['ONI'] <= -0.5]['intense_typhoon'].mean()
        neutral_intense = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['intense_typhoon'].mean()
        return f"<h3>Pressure Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
               f"<p>El Niño: {el_nino_intense:.2%}</p><p>La Niña: {la_nina_intense:.2%}</p><p>Neutral: {neutral_intense:.2%}</p>"
    elif regression_type == 'Longitude':
        filtered_data = filtered_data.dropna(subset=['LON'])
        filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int)
        X = sm.add_constant(filtered_data['ONI'])
        y = filtered_data['western_typhoon']
        model = sm.Logit(y, X).fit()
        beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
        el_nino_western = filtered_data[filtered_data['ONI'] >= 0.5]['western_typhoon'].mean()
        la_nina_western = filtered_data[filtered_data['ONI'] <= -0.5]['western_typhoon'].mean()
        neutral_western = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['western_typhoon'].mean()
        return f"<h3>Longitude Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
               f"<p>El Niño: {el_nino_western:.2%}</p><p>La Niña: {la_nina_western:.2%}</p><p>Neutral: {neutral_western:.2%}</p>"

# Typhoon Path Animation Function
def typhoon_path_animation(year, typhoon, standard):
    storm = ibtracs.get_storm(typhoon)
    fig = go.Figure()
    fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray'), name='Path', showlegend=False))
    fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers', marker=dict(size=10, color='green', symbol='star'),
                                name='Starting Point', text=storm.time[0].strftime('%Y-%m-%d %H:%M'), hoverinfo='text+name'))
    frames = []
    for i in range(len(storm.time)):
        category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
        frame_data = [
            go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue'), name='Path Traveled', showlegend=False),
            go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers+text', marker=dict(size=10, color=color, symbol='star'),
                          text=category, textposition="top center", name='Current Location', hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Category: {category}<br>Wind Speed: {storm.vmax[i]:.1f} m/s")
        ]
        frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
    fig.frames = frames
    fig.update_layout(title=f"{year} {storm.name} Typhoon Path", geo=dict(projection_type='natural earth', showland=True),
                      updatemenus=[{"buttons": [{"args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "transition": {"duration": 0}}], "label": "Play", "method": "animate"},
                                                {"args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}], "label": "Pause", "method": "animate"}],
                                    "direction": "left", "pad": {"r": 10, "t": 87}, "showactive": False, "type": "buttons", "x": 0.1, "xanchor": "right", "y": 0, "yanchor": "top"}],
                      sliders=[{"steps": [{"args": [[f"frame{k}"], {"frame": {"duration": 100, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}],
                                          "label": storm.time[k].strftime('%Y-%m-%d %H:%M'), "method": "animate"} for k in range(len(storm.time))]}])
    return fig

def categorize_typhoon_by_standard(wind_speed, standard):
    if standard == 'taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
        else:
            return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
        else:
            return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']

# Update Typhoon Dropdown
def update_typhoon_dropdown(selected_year):
    season = ibtracs.get_season(selected_year)
    storm_summary = season.summary()
    options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
    values = [storm_summary['id'][i] for i in range(storm_summary['season_storms'])]
    return gr.Dropdown.update(choices=options, value=values[0] if values else None)

# Gradio Interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
    gr.Markdown("# Typhoon Analysis Dashboard")

    with gr.Tab("Main Analysis"):
        with gr.Row():
            start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
            end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
        enso_dropdown = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
        typhoon_search = gr.Textbox(label="Search Typhoon Name")
        analyze_button = gr.Button("Analyze")
        typhoon_tracks = gr.Plot(label="Typhoon Tracks")
        all_years_regression = gr.Plot(label="All Years Regression")
        regression_graphs = gr.HTML(label="Regression Graphs by ENSO Phase")
        slopes = gr.HTML(label="Slopes")
        wind_oni_scatter = gr.Plot(label="Wind Speed vs ONI")
        pressure_oni_scatter = gr.Plot(label="Pressure vs ONI")
        correlation_text = gr.HTML(label="Correlation Coefficient")
        max_wind_speed_text = gr.HTML(label="Max Wind Speed")
        min_pressure_text = gr.HTML(label="Min Pressure")
        wind_oni_correlation = gr.HTML(label="Wind-ONI Correlation")
        pressure_oni_correlation = gr.HTML(label="Pressure-ONI Correlation")
        count_analysis = gr.HTML(label="Typhoon Count Analysis")
        month_analysis = gr.HTML(label="Concentrated Months Analysis")
        analyze_button.click(main_analysis, inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search],
                             outputs=[typhoon_tracks, all_years_regression, regression_graphs, slopes, wind_oni_scatter, pressure_oni_scatter,
                                      correlation_text, max_wind_speed_text, min_pressure_text, wind_oni_correlation, pressure_oni_correlation,
                                      count_analysis, month_analysis])

    with gr.Tab("Cluster Analysis"):
        n_clusters = gr.Number(label="Number of Clusters", value=5, minimum=1, maximum=20, step=1)
        show_clusters = gr.Checkbox(label="Show Clusters")
        show_routes = gr.Checkbox(label="Show Typhoon Routes")
        fourier_series = gr.Checkbox(label="Fourier Series")
        with gr.Row():
            cluster_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            cluster_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
            cluster_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            cluster_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
        cluster_enso = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
        cluster_button = gr.Button("Generate Cluster Analysis")
        cluster_figure = gr.Plot(label="Cluster Routes")
        equations_output = gr.HTML(label="Cluster Equations")
        cluster_button.click(cluster_analysis, inputs=[n_clusters, show_clusters, show_routes, fourier_series, cluster_start_year, cluster_start_month, cluster_end_year, cluster_end_month, cluster_enso],
                             outputs=[cluster_figure, equations_output])

    with gr.Tab("Logistic Regression"):
        regression_type = gr.Dropdown(label="Regression Type", choices=["Wind", "Pressure", "Longitude"], value="Wind")
        with gr.Row():
            reg_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            reg_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
            reg_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            reg_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
        regression_button = gr.Button("Run Regression")
        regression_results = gr.HTML(label="Regression Results")
        regression_button.click(logistic_regression, inputs=[regression_type, reg_start_year, reg_start_month, reg_end_year, reg_end_month], outputs=[regression_results])

    with gr.Tab("Typhoon Path Animation"):
        year_dropdown = gr.Dropdown(label="Year", choices=[str(year) for year in range(1950, 2025)], value="2024")
        typhoon_dropdown = gr.Dropdown(label="Typhoon", choices=[])
        standard_dropdown = gr.Dropdown(label="Classification Standard", choices=["Atlantic", "Taiwan"], value="Atlantic")
        animation_button = gr.Button("Generate Animation")
        animation_figure = gr.Plot(label="Typhoon Path Animation")
        year_dropdown.change(update_typhoon_dropdown, inputs=[year_dropdown], outputs=[typhoon_dropdown])
        animation_button.click(typhoon_path_animation, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=[animation_figure])

demo.launch()