euler314's picture
Update app.py
a2d2271 verified
raw
history blame
32.8 kB
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
from datetime import datetime
from scipy import stats
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
import statsmodels.api as sm
import tropycal.tracks as tracks
import os
import pickle
import requests
import tempfile
import shutil
import filecmp
import csv
from collections import defaultdict
import argparse
# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
# File paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
# Color map for categories
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
'C2 Typhoon': 'rgb(255, 191, 0)',
'C1 Typhoon': 'rgb(255, 255, 0)',
'Tropical Storm': 'rgb(0, 255, 255)',
'Tropical Depression': 'rgb(173, 216, 230)'
}
# Classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
# Data loading and processing functions (unchanged from Dash)
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
next(infile)
next(infile)
reader = csv.reader(infile)
sid_data = defaultdict(list)
for row in reader:
if not row:
continue
sid = row[0]
iso_time = row[6]
sid_data[sid].append((row, iso_time))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date, 'END_DATE': end_date
})
def download_oni_file(url, filename):
try:
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
except requests.RequestException:
return False
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, 'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_ibtracs_data():
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
temp_file_path = temp_file.name
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first', 'LAT': 'first', 'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed / 2
if wind_speed_kt >= 137/2.35:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113/2.35:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96/2.35:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83/2.35:
return 'C2 Typhoon'
elif wind_speed_kt >= 64/2.35:
return 'C1 Typhoon'
elif wind_speed_kt >= 34/2.35:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
def filter_west_pacific_coordinates(lons, lats):
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
return lons[mask], lats[mask]
def get_storm_data(storm_id):
return ibtracs.get_storm(storm_id)
# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data = pd.read_csv(ONI_DATA_PATH)
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
oni_df = pd.read_csv(ONI_DATA_PATH, index_col='Date', parse_dates=True)
# Main Analysis Function
def main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
filtered_data = merged_data[(merged_data['Year'] >= start_year) & (merged_data['Year'] <= end_year) &
(merged_data['Month'].astype(int) >= start_month) & (merged_data['Month'].astype(int) <= end_month)]
# Typhoon Tracks
fig_tracks = go.Figure()
regression_data = {'El Nino': {'longitudes': [], 'oni_values': [], 'names': []}, 'La Nina': {'longitudes': [], 'oni_values': [], 'names': []},
'Neutral': {'longitudes': [], 'oni_values': [], 'names': []}, 'All': {'longitudes': [], 'oni_values': [], 'names': []}}
for year in range(start_year, end_year + 1):
season = ibtracs.get_season(year)
for storm_id in season.summary()['id']:
storm = get_storm_data(storm_id)
storm_dates = storm.time
if any(start_date <= date <= end_date for date in storm_dates):
storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
if isinstance(storm_oni, pd.Series):
storm_oni = storm_oni.iloc[0]
phase = classify_enso_phases(storm_oni)
regression_data[phase]['longitudes'].append(storm.lon[0])
regression_data[phase]['oni_values'].append(storm_oni)
regression_data[phase]['names'].append(f'{storm.name} ({year})')
regression_data['All']['longitudes'].append(storm.lon[0])
regression_data['All']['oni_values'].append(storm_oni)
regression_data['All']['names'].append(f'{storm.name} ({year})')
if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and phase == 'El Nino') or
(enso_phase == 'La Niña Years' and phase == 'La Nina') or (enso_phase == 'Neutral Years' and phase == 'Neutral')):
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
fig_tracks.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', name=storm.name,
text=f'{storm.name} ({year})', hoverinfo='text', line=dict(width=2, color=color)))
fig_tracks.update_layout(title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}', geo=dict(projection_type='natural earth', showland=True))
# All Years Regression
all_years_fig = go.Figure()
df_all = pd.DataFrame({'Longitude': regression_data['All']['longitudes'], 'ONI': regression_data['All']['oni_values'], 'Name': regression_data['All']['names']})
if not df_all.empty and len(df_all) > 1:
all_years_fig = px.scatter(df_all, x='Longitude', y='ONI', hover_data=['Name'], title='All Years Typhoon Generation vs. ONI')
X = np.array(df_all['Longitude']).reshape(-1, 1)
y = df_all['ONI']
model = LinearRegression().fit(X, y)
y_pred = model.predict(X)
all_years_fig.add_trace(go.Scatter(x=df_all['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
# Regression Graphs by Phase
regression_html = ""
slopes_html = ""
for phase in ['El Nino', 'La Nina', 'Neutral']:
df = pd.DataFrame({'Longitude': regression_data[phase]['longitudes'], 'ONI': regression_data[phase]['oni_values'], 'Name': regression_data[phase]['names']})
if not df.empty and len(df) > 1:
fig = px.scatter(df, x='Longitude', y='ONI', hover_data=['Name'], title=f'{phase} Typhoon Generation vs. ONI')
X = np.array(df['Longitude']).reshape(-1, 1)
y = df['ONI']
model = LinearRegression().fit(X, y)
y_pred = model.predict(X)
slope = model.coef_[0]
correlation_coef = np.corrcoef(df['Longitude'], df['ONI'])[0, 1]
fig.add_trace(go.Scatter(x=df['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
regression_html += fig.to_html(include_plotlyjs=False)
slopes_html += f"<p>{phase} Regression Slope: {slope:.4f}, Correlation Coefficient: {correlation_coef:.4f}</p>"
# Wind and Pressure Scatter Plots
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Wind Speed vs ONI', labels={'USA_WIND': 'Maximum Wind Speed (knots)'}, color_discrete_map=color_map)
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Pressure vs ONI', labels={'USA_PRES': 'Minimum Pressure (hPa)'}, color_discrete_map=color_map)
if typhoon_search:
for fig in [wind_oni_scatter, pressure_oni_scatter]:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
fig.add_trace(go.Scatter(x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}'))
# Additional Metrics
max_wind_speed = filtered_data['USA_WIND'].max()
min_pressure = filtered_data['USA_PRES'].min()
typhoon_counts = filtered_data['ONI'].apply(classify_enso_phases).value_counts().to_dict()
month_counts = filtered_data.groupby([filtered_data['ONI'].apply(classify_enso_phases), filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
concentrated_months = month_counts.idxmax(axis=1).to_dict()
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
count_analysis_html = "".join([f"<p>{phase}: {count} typhoons</p>" for phase, count in typhoon_counts.items()])
month_analysis_html = "".join([f"<p>{phase}: Most concentrated in {month_names[month-1]}</p>" for phase, month in concentrated_months.items()])
return (fig_tracks, all_years_fig, regression_html, slopes_html, wind_oni_scatter, pressure_oni_scatter,
"Logistic Regression Results: See Logistic Regression Tab", f"Maximum Wind Speed: {max_wind_speed:.2f} knots",
f"Minimum Pressure: {min_pressure:.2f} hPa", "Wind-ONI correlation: See Logistic Regression Tab",
"Pressure-ONI correlation: See Logistic Regression Tab", count_analysis_html, month_analysis_html)
# Cluster Analysis Function
def cluster_analysis(n_clusters, show_clusters, show_routes, fourier_series, start_year, start_month, end_year, end_month, enso_phase):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
fig_routes = go.Figure()
west_pacific_storms = []
for year in range(start_year, end_year + 1):
season = ibtracs.get_season(year)
for storm_id in season.summary()['id']:
storm = get_storm_data(storm_id)
storm_date = storm.time[0]
storm_oni = filtered_oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
if isinstance(storm_oni, pd.Series):
storm_oni = storm_oni.iloc[0]
storm_phase = classify_enso_phases(storm_oni)
if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and storm_phase == 'El Nino') or
(enso_phase == 'La Niña Years' and storm_phase == 'La Nina') or (enso_phase == 'Neutral Years' and storm_phase == 'Neutral')):
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
if len(lons) > 1:
west_pacific_storms.append((lons, lats))
max_length = max(len(storm[0]) for storm in west_pacific_storms)
standardized_routes = []
for lons, lats in west_pacific_storms:
if len(lons) < 2:
continue
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
lon_interp = interp1d(t, lons, kind='linear')(t_new)
lat_interp = interp1d(t, lats, kind='linear')(t_new)
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
standardized_routes.append(route_vector)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(standardized_routes)
cluster_counts = np.bincount(clusters)
equations_html = ""
if show_routes:
for lons, lats in west_pacific_storms:
fig_routes.add_trace(go.Scattergeo(lon=lons, lat=lats, mode='lines', line=dict(width=1, color='lightgray'), showlegend=False, hoverinfo='none'))
if show_clusters:
for i in range(n_clusters):
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
fig_routes.add_trace(go.Scattergeo(lon=cluster_center[:, 0], lat=cluster_center[:, 1], mode='lines', name=f'Cluster {i+1} (n={cluster_counts[i]})', line=dict(width=3)))
if fourier_series:
X = cluster_center[:, 0]
y = cluster_center[:, 1]
x_min, x_max = X.min(), X.max()
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
params, _ = curve_fit(lambda x, a0, a1, b1, a2, b2, a3, b3, a4, b4: a0 + a1*np.cos(x) + b1*np.sin(x) +
a2*np.cos(2*x) + b2*np.sin(2*x) + a3*np.cos(3*x) + b3*np.sin(3*x) + a4*np.cos(4*x) + b4*np.sin(4*x),
X_normalized, y)
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
equations_html += f"<h4>Cluster {i+1} (Typhoons: {cluster_counts[i]})</h4><p>Fourier Series: y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + " \
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + {a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + {a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)</p>" \
f"<p>X Range: 0 to {2*np.pi:.4f}</p><p>Longitude Range: {x_min:.4f}°E to {x_max:.4f}°E</p><hr>"
fig_routes.update_layout(title=f'Typhoon Routes Clustering ({start_year}-{end_year}) - {enso_phase}', geo=dict(projection_type='mercator', showland=True,
lataxis={'range': [0, 40]}, lonaxis={'range': [100, 180]}))
return fig_routes, equations_html
# Logistic Regression Functions
def logistic_regression(regression_type, start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)]
if regression_type == 'Wind':
filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int)
X = sm.add_constant(filtered_data['ONI'])
y = filtered_data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
el_nino_severe = filtered_data[filtered_data['ONI'] >= 0.5]['severe_typhoon'].mean()
la_nina_severe = filtered_data[filtered_data['ONI'] <= -0.5]['severe_typhoon'].mean()
neutral_severe = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['severe_typhoon'].mean()
return f"<h3>Wind Speed Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
f"<p>El Niño: {el_nino_severe:.2%}</p><p>La Niña: {la_nina_severe:.2%}</p><p>Neutral: {neutral_severe:.2%}</p>"
elif regression_type == 'Pressure':
filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int)
X = sm.add_constant(filtered_data['ONI'])
y = filtered_data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
el_nino_intense = filtered_data[filtered_data['ONI'] >= 0.5]['intense_typhoon'].mean()
la_nina_intense = filtered_data[filtered_data['ONI'] <= -0.5]['intense_typhoon'].mean()
neutral_intense = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['intense_typhoon'].mean()
return f"<h3>Pressure Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
f"<p>El Niño: {el_nino_intense:.2%}</p><p>La Niña: {la_nina_intense:.2%}</p><p>Neutral: {neutral_intense:.2%}</p>"
elif regression_type == 'Longitude':
filtered_data = filtered_data.dropna(subset=['LON'])
filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int)
X = sm.add_constant(filtered_data['ONI'])
y = filtered_data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
el_nino_western = filtered_data[filtered_data['ONI'] >= 0.5]['western_typhoon'].mean()
la_nina_western = filtered_data[filtered_data['ONI'] <= -0.5]['western_typhoon'].mean()
neutral_western = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['western_typhoon'].mean()
return f"<h3>Longitude Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
f"<p>El Niño: {el_nino_western:.2%}</p><p>La Niña: {la_nina_western:.2%}</p><p>Neutral: {neutral_western:.2%}</p>"
# Typhoon Path Animation Function
def typhoon_path_animation(year, typhoon, standard):
storm = ibtracs.get_storm(typhoon)
fig = go.Figure()
fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray'), name='Path', showlegend=False))
fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers', marker=dict(size=10, color='green', symbol='star'),
name='Starting Point', text=storm.time[0].strftime('%Y-%m-%d %H:%M'), hoverinfo='text+name'))
frames = []
for i in range(len(storm.time)):
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
frame_data = [
go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue'), name='Path Traveled', showlegend=False),
go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers+text', marker=dict(size=10, color=color, symbol='star'),
text=category, textposition="top center", name='Current Location', hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Category: {category}<br>Wind Speed: {storm.vmax[i]:.1f} m/s")
]
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
fig.frames = frames
fig.update_layout(title=f"{year} {storm.name} Typhoon Path", geo=dict(projection_type='natural earth', showland=True),
updatemenus=[{"buttons": [{"args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "transition": {"duration": 0}}], "label": "Play", "method": "animate"},
{"args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}], "label": "Pause", "method": "animate"}],
"direction": "left", "pad": {"r": 10, "t": 87}, "showactive": False, "type": "buttons", "x": 0.1, "xanchor": "right", "y": 0, "yanchor": "top"}],
sliders=[{"steps": [{"args": [[f"frame{k}"], {"frame": {"duration": 100, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}],
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'), "method": "animate"} for k in range(len(storm.time))]}])
return fig
def categorize_typhoon_by_standard(wind_speed, standard):
if standard == 'taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
else:
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
else:
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
# Update Typhoon Dropdown
def update_typhoon_dropdown(selected_year):
season = ibtracs.get_season(selected_year)
storm_summary = season.summary()
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
values = [storm_summary['id'][i] for i in range(storm_summary['season_storms'])]
return gr.Dropdown.update(choices=options, value=values[0] if values else None)
# Gradio Interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Main Analysis"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
enso_dropdown = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
typhoon_search = gr.Textbox(label="Search Typhoon Name")
analyze_button = gr.Button("Analyze")
typhoon_tracks = gr.Plot(label="Typhoon Tracks")
all_years_regression = gr.Plot(label="All Years Regression")
regression_graphs = gr.HTML(label="Regression Graphs by ENSO Phase")
slopes = gr.HTML(label="Slopes")
wind_oni_scatter = gr.Plot(label="Wind Speed vs ONI")
pressure_oni_scatter = gr.Plot(label="Pressure vs ONI")
correlation_text = gr.HTML(label="Correlation Coefficient")
max_wind_speed_text = gr.HTML(label="Max Wind Speed")
min_pressure_text = gr.HTML(label="Min Pressure")
wind_oni_correlation = gr.HTML(label="Wind-ONI Correlation")
pressure_oni_correlation = gr.HTML(label="Pressure-ONI Correlation")
count_analysis = gr.HTML(label="Typhoon Count Analysis")
month_analysis = gr.HTML(label="Concentrated Months Analysis")
analyze_button.click(main_analysis, inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search],
outputs=[typhoon_tracks, all_years_regression, regression_graphs, slopes, wind_oni_scatter, pressure_oni_scatter,
correlation_text, max_wind_speed_text, min_pressure_text, wind_oni_correlation, pressure_oni_correlation,
count_analysis, month_analysis])
with gr.Tab("Cluster Analysis"):
n_clusters = gr.Number(label="Number of Clusters", value=5, minimum=1, maximum=20, step=1)
show_clusters = gr.Checkbox(label="Show Clusters")
show_routes = gr.Checkbox(label="Show Typhoon Routes")
fourier_series = gr.Checkbox(label="Fourier Series")
with gr.Row():
cluster_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
cluster_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
cluster_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
cluster_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
cluster_enso = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
cluster_button = gr.Button("Generate Cluster Analysis")
cluster_figure = gr.Plot(label="Cluster Routes")
equations_output = gr.HTML(label="Cluster Equations")
cluster_button.click(cluster_analysis, inputs=[n_clusters, show_clusters, show_routes, fourier_series, cluster_start_year, cluster_start_month, cluster_end_year, cluster_end_month, cluster_enso],
outputs=[cluster_figure, equations_output])
with gr.Tab("Logistic Regression"):
regression_type = gr.Dropdown(label="Regression Type", choices=["Wind", "Pressure", "Longitude"], value="Wind")
with gr.Row():
reg_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
reg_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
reg_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
reg_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
regression_button = gr.Button("Run Regression")
regression_results = gr.HTML(label="Regression Results")
regression_button.click(logistic_regression, inputs=[regression_type, reg_start_year, reg_start_month, reg_end_year, reg_end_month], outputs=[regression_results])
with gr.Tab("Typhoon Path Animation"):
year_dropdown = gr.Dropdown(label="Year", choices=[str(year) for year in range(1950, 2025)], value="2024")
typhoon_dropdown = gr.Dropdown(label="Typhoon", choices=[])
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=["Atlantic", "Taiwan"], value="Atlantic")
animation_button = gr.Button("Generate Animation")
animation_figure = gr.Plot(label="Typhoon Path Animation")
year_dropdown.change(update_typhoon_dropdown, inputs=[year_dropdown], outputs=[typhoon_dropdown])
animation_button.click(typhoon_path_animation, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=[animation_figure])
demo.launch()