rouge / README.md
Davidg707's picture
Update README.md
3937019
|
raw
history blame
6.47 kB
metadata
title: ROUGE
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
  - evaluate
  - metric
description: >-
  ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of
  metrics and a software package used for evaluating automatic summarization and
  machine translation software in natural language processing. The metrics
  compare an automatically produced summary or translation against a reference
  or a set of references (human-produced) summary or translation.

  Note that ROUGE is case insensitive, meaning that upper case letters are
  treated the same way as lower case letters.

  This metrics is a wrapper around Google Research reimplementation of ROUGE:
  https://github.com/google-research/google-research/tree/master/rouge

Metric Card for ROUGE

Metric Description

ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.

Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.

This metrics is a wrapper around the Google Research reimplementation of ROUGE

How to Use

At minimum, this metric takes as input a list of predictions and a list of references:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references)
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}

One can also pass a custom tokenizer which is especially useful for non-latin languages.

>>> results = rouge.compute(predictions=predictions,
...                         references=references,
                            tokenizer=lambda x: x.split())
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}

It can also deal with lists of references for each predictions:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = [["hello", "there"], ["general kenobi", "general yoda"]]
>>> results = rouge.compute(predictions=predictions,
...                         references=references)
>>> print(results)
{'rouge1': 0.8333, 'rouge2': 0.5, 'rougeL': 0.8333, 'rougeLsum': 0.8333}

Inputs

  • predictions (list): list of predictions to score. Each prediction should be a string with tokens separated by spaces.
  • references (list or list[list]): list of reference for each prediction or a list of several references per prediction. Each reference should be a string with tokens separated by spaces.
  • rouge_types (list): A list of rouge types to calculate. Defaults to ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'].
    • Valid rouge types:
      • "rouge1": unigram (1-gram) based scoring
      • "rouge2": bigram (2-gram) based scoring
      • "rougeL": Longest common subsequence based scoring.
      • "rougeLSum": splits text using "\n"
      • See here for more information
  • use_aggregator (boolean): If True, returns aggregates. Defaults to True.
  • use_stemmer (boolean): If True, uses Porter stemmer to strip word suffixes. Defaults to False.

Output Values

The output is a dictionary with one entry for each rouge type in the input list rouge_types. If use_aggregator=False, each dictionary entry is a list of scores, with one score for each sentence. E.g. if rouge_types=['rouge1', 'rouge2'] and use_aggregator=False, the output is:

{'rouge1': [0.6666666666666666, 1.0], 'rouge2': [0.0, 1.0]}

If rouge_types=['rouge1', 'rouge2'] and use_aggregator=True, the output is of the following format:

{'rouge1': 1.0, 'rouge2': 1.0}

The ROUGE values are in the range of 0 to 1.

Values from Popular Papers

Examples

An example without aggregation:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references,
...                         use_aggregator=False)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
[0.5, 0.0]

The same example, but with aggregation:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references,
...                         use_aggregator=True)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
0.25

The same example, but only calculating rouge_1:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references,
...                         rouge_types=['rouge_1'],
...                         use_aggregator=True)
>>> print(list(results.keys()))
['rouge1']
>>> print(results["rouge1"])
0.25

Limitations and Bias

See Schluter (2017) for an in-depth discussion of many of ROUGE's limits.

Citation

@inproceedings{lin-2004-rouge,
    title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
    author = "Lin, Chin-Yew",
    booktitle = "Text Summarization Branches Out",
    month = jul,
    year = "2004",
    address = "Barcelona, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W04-1013",
    pages = "74--81",
}

Further References