Spaces:
Runtime error
Runtime error
title: ROUGE | |
emoji: 🤗 | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 3.0.2 | |
app_file: app.py | |
pinned: false | |
tags: | |
- evaluate | |
- metric | |
description: >- | |
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for | |
evaluating automatic summarization and machine translation software in natural language processing. | |
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. | |
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. | |
This metrics is a wrapper around Google Research reimplementation of ROUGE: | |
https://github.com/google-research/google-research/tree/master/rouge | |
# Metric Card for ROUGE | |
## Metric Description | |
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. | |
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. | |
This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge) | |
## How to Use | |
At minimum, this metric takes as input a list of predictions and a list of references: | |
```python | |
>>> rouge = evaluate.load('rouge') | |
>>> predictions = ["hello there", "general kenobi"] | |
>>> references = ["hello there", "general kenobi"] | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references) | |
>>> print(results) | |
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0} | |
``` | |
One can also pass a custom tokenizer which is especially useful for non-latin languages. | |
```python | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references, | |
tokenizer=lambda x: x.split()) | |
>>> print(results) | |
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0} | |
``` | |
It can also deal with lists of references for each predictions: | |
```python | |
>>> rouge = evaluate.load('rouge') | |
>>> predictions = ["hello there", "general kenobi"] | |
>>> references = [["hello", "there"], ["general kenobi", "general yoda"]] | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references) | |
>>> print(results) | |
{'rouge1': 0.8333, 'rouge2': 0.5, 'rougeL': 0.8333, 'rougeLsum': 0.8333} | |
``` | |
### Inputs | |
- **predictions** (`list`): list of predictions to score. Each prediction | |
should be a string with tokens separated by spaces. | |
- **references** (`list` or `list[list]`): list of reference for each prediction or a list of several references per prediction. Each | |
reference should be a string with tokens separated by spaces. | |
- **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`. | |
- Valid rouge types: | |
- `"rouge1"`: unigram (1-gram) based scoring | |
- `"rouge2"`: bigram (2-gram) based scoring | |
- `"rougeL"`: Longest common subsequence based scoring. | |
- `"rougeLSum"`: splits text using `"\n"` | |
- See [here](https://github.com/huggingface/datasets/issues/617) for more information | |
- **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`. | |
- **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`. | |
### Output Values | |
The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of scores, with one score for each sentence. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is: | |
```python | |
{'rouge1': [0.6666666666666666, 1.0], 'rouge2': [0.0, 1.0]} | |
``` | |
If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format: | |
```python | |
{'rouge1': 1.0, 'rouge2': 1.0} | |
``` | |
The ROUGE values are in the range of 0 to 1. | |
#### Values from Popular Papers | |
### Examples | |
An example without aggregation: | |
```python | |
>>> rouge = evaluate.load('rouge') | |
>>> predictions = ["hello goodbye", "ankh morpork"] | |
>>> references = ["goodbye", "general kenobi"] | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references, | |
... use_aggregator=False) | |
>>> print(list(results.keys())) | |
['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] | |
>>> print(results["rouge1"]) | |
[0.5, 0.0] | |
``` | |
The same example, but with aggregation: | |
```python | |
>>> rouge = evaluate.load('rouge') | |
>>> predictions = ["hello goodbye", "ankh morpork"] | |
>>> references = ["goodbye", "general kenobi"] | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references, | |
... use_aggregator=True) | |
>>> print(list(results.keys())) | |
['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] | |
>>> print(results["rouge1"]) | |
0.25 | |
``` | |
The same example, but only calculating `rouge_1`: | |
```python | |
>>> rouge = evaluate.load('rouge') | |
>>> predictions = ["hello goodbye", "ankh morpork"] | |
>>> references = ["goodbye", "general kenobi"] | |
>>> results = rouge.compute(predictions=predictions, | |
... references=references, | |
... rouge_types=['rouge_1'], | |
... use_aggregator=True) | |
>>> print(list(results.keys())) | |
['rouge1'] | |
>>> print(results["rouge1"]) | |
0.25 | |
``` | |
## Limitations and Bias | |
See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits. | |
## Citation | |
```bibtex | |
@inproceedings{lin-2004-rouge, | |
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", | |
author = "Lin, Chin-Yew", | |
booktitle = "Text Summarization Branches Out", | |
month = jul, | |
year = "2004", | |
address = "Barcelona, Spain", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/W04-1013", | |
pages = "74--81", | |
} | |
``` | |
## Further References | |
- This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge) |