EveryText / app.py
fantos's picture
Update app.py
f2a614f verified
raw
history blame
8.9 kB
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
import os
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
@spaces.GPU
def translate_korean_to_english(text):
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text): # Check if Korean characters are present
translated = translator(text, max_length=512)[0]['translation_text']
return translated
return text
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def text_to_image(text, size=72, position="middle-center"):
width, height = 1024, 576
image = Image.new("RGB", (width, height), "white")
draw = ImageDraw.Draw(image)
font_files = ["Arial_Unicode.ttf"]
font = None
for font_file in font_files:
font_path = os.path.join(os.path.dirname(__file__), font_file)
if os.path.exists(font_path):
try:
font = ImageFont.truetype(font_path, size=size)
print(f"Using font: {font_file}")
break
except IOError:
print(f"Error loading font: {font_file}")
if font is None:
print("No suitable font found. Using default font.")
font = ImageFont.load_default()
lines = text.split('\n')
max_line_width = 0
total_height = 0
line_heights = []
for line in lines:
left, top, right, bottom = draw.textbbox((0, 0), line, font=font)
line_width = right - left
line_height = bottom - top
line_heights.append(line_height)
max_line_width = max(max_line_width, line_width)
total_height += line_height
position_mapping = {
"top-left": (10, 10),
"top-center": ((width - max_line_width) / 2, 10),
"top-right": (width - max_line_width - 10, 10),
"middle-left": (10, (height - total_height) / 2),
"middle-center": ((width - max_line_width) / 2, (height - total_height) / 2),
"middle-right": (width - max_line_width - 10, (height - total_height) / 2),
"bottom-left": (10, height - total_height - 10),
"bottom-center": ((width - max_line_width) / 2, height - total_height - 10),
"bottom-right": (width - max_line_width - 10, height - total_height - 10),
}
x, y = position_mapping.get(position, ((width - max_line_width) / 2, height - total_height - 10))
for i, line in enumerate(lines):
draw.text((x, y), line, fill="black", font=font)
y += line_heights[i]
return image
@spaces.GPU
def infer_canny(prompt,
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
prompt = translate_korean_to_english(prompt)
negative_prompt = translate_korean_to_english(negative_prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate text image
init_image = text_to_image(prompt)
init_image = resize_image(init_image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Row():
canny_button = gr.Button("Canny", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="Result", show_label=False, columns=2)
seed_used = gr.Number(label="Seed Used")
canny_button.click(
fn = infer_canny,
inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
Kolors.queue().launch(debug=True)