File size: 6,966 Bytes
9659078 5f924a4 9659078 adf3e3f f523090 adf3e3f 5a84593 bd64281 5a84593 9659078 cc07fe9 9659078 cc07fe9 5a82610 5f924a4 8302c0f 5f924a4 5a82610 e236784 9659078 8302c0f 9659078 a4b64d4 0435c60 ed4738c 0435c60 8e00ffa 9659078 5a82610 3c31edb 8302c0f 0435c60 5a82610 f523090 0c32eee cc07fe9 0c32eee b5682ef 8302c0f 0cdadc9 0bd14d2 9d546f2 cc07fe9 da5b19f 44eb4d8 b90ed12 44eb4d8 0bd14d2 cc07fe9 007b47b 7a3df69 ce514b9 7a3df69 cc07fe9 0bd14d2 b5682ef 0bd14d2 b5682ef 0bd14d2 b5682ef da5b19f b5682ef 0bd14d2 3d3d24d e420073 9bb5aa9 e420073 9bb5aa9 e420073 9bb5aa9 007b47b 9bb5aa9 44eb4d8 b90ed12 44eb4d8 9bb5aa9 e420073 0bd14d2 cc07fe9 adf3e3f d9dce8e 0bd14d2 b5682ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import os
import shutil
#from huggingface_hub import snapshot_download
import numpy as np
from scipy.io import wavfile
"""
model_ids = [
'suno/bark',
]
for model_id in model_ids:
model_name = model_id.split('/')[-1]
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
from TTS.tts.configs.bark_config import BarkConfig
from TTS.tts.models.bark import Bark
#os.environ['CUDA_VISIBLE_DEVICES'] = '1'
config = BarkConfig()
model = Bark.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True)
"""
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
def infer(prompt, input_wav_file):
print("SAVING THE AUDIO FILE TO WHERE IT BELONGS")
# Path to your WAV file
source_path = input_wav_file
# Destination directory
destination_directory = "bark_voices"
# Extract the file name without the extension
file_name = os.path.splitext(os.path.basename(source_path))[0]
# Construct the full destination directory path
destination_path = os.path.join(destination_directory, file_name)
# Create the new directory
os.makedirs(destination_path, exist_ok=True)
# Move the WAV file to the new directory
shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav"))
"""
text = prompt
print("SYNTHETIZING...")
# with random speaker
#output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None)
# cloning a speaker.
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
output_dict = model.synthesize(
text,
config,
speaker_id=f"{file_name}",
voice_dirs="bark_voices/",
gpu=True
)
print(output_dict)
sample_rate = 24000 # Replace with the actual sample rate
print("WRITING WAVE FILE")
wavfile.write(
'output.wav',
sample_rate,
output_dict['wav']
)
"""
tts.tts_to_file(text=prompt,
file_path="output.wav",
voice_dir="bark_voices/",
speaker=f"{file_name}")
# List all the files and subdirectories in the given directory
contents = os.listdir(f"bark_voices/{file_name}")
# Print the contents
for item in contents:
print(item)
tts_video = gr.make_waveform(audio="output.wav")
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True)
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
img[src*='#center'] {
display: block;
margin: auto;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.disclaimer {
text-align: left;
}
.disclaimer > p {
font-size: .8rem;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
<h1 style="text-align: center;">Coqui Bark Voice Cloning</h1>
<p style="text-align: center;">
Clone any voice in less than 2 minutes with this <a href="https://tts.readthedocs.io/en/dev/models/bark.html" target="_blank">Coqui TSS + Bark</a> demo ! <br />
Upload a clean 20 seconds WAV file of the voice you want to clone, <br />
type your text-to-speech prompt and hit submit ! <br />
</p>
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/instant-TTS-Bark-cloning?duplicate=true)
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Text to speech prompt"
)
audio_in = gr.Audio(
label="WAV voice to clone",
type="filepath",
source="upload"
)
submit_btn = gr.Button("Submit")
with gr.Column():
cloned_out = gr.Audio(
label="Text to speech output"
)
video_out = gr.Video(
label = "Waveform video",
animate = True
)
npz_file = gr.File(
label = ".npz file",
visible = False
)
gr.Examples(
examples = [
[
"Once upon a time, in a cozy little shell, lived a friendly crab named Crabby. Crabby loved his cozy home, but he always felt like something was missing.",
"./examples/en_speaker_6.wav",
],
[
"It was a typical afternoon in the bustling city, the sun shining brightly through the windows of the packed courtroom. Three people sat at the bar, their faces etched with worry and anxiety. ",
"./examples/en_speaker_9.wav",
],
],
fn = infer,
inputs = [
prompt,
audio_in
],
outputs = [
cloned_out,
video_out,
npz_file
],
cache_examples = True
)
gr.HTML("""
<div class="footer">
<p>
Coqui + Bark Voice Cloning Demo by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
</p>
</div>
<div class="disclaimer">
<h3> * DISCLAIMER </h3>
<p>
I hold no responsibility for the utilization or outcomes of audio content produced using the semantic constructs generated by this model. <br />
Please ensure that any application of this technology remains within legal and ethical boundaries. <br />
It is important to utilize this technology for ethical and legal purposes, upholding the standards of creativity and innovation.
</p>
</div>
""")
submit_btn.click(
fn = infer,
inputs = [
prompt,
audio_in
],
outputs = [
cloned_out,
video_out,
npz_file
]
)
demo.queue(max_size=20).launch() |