fhmsf's picture
Update app.py
df2b51a verified
import os
import faiss
import gradio as gr
import numpy as np
import requests
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
################################################################################
# 1. PDF Parsing and Chunking
################################################################################
def extract_pdf_text(pdf_file) -> str:
reader = PdfReader(pdf_file)
all_text = []
for page in reader.pages:
text = page.extract_text() or ""
all_text.append(text.strip())
return "\n".join(all_text)
def chunk_text(text, chunk_size=300, overlap=50):
words = text.split()
chunks = []
start = 0
while start < len(words):
end = start + chunk_size
chunk = words[start:end]
chunks.append(" ".join(chunk))
start += (chunk_size - overlap)
return chunks
################################################################################
# 2. Embedding Model
################################################################################
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
################################################################################
# 3. Build FAISS Index
################################################################################
def build_faiss_index(chunks):
chunk_embeddings = embedding_model.encode(chunks, show_progress_bar=False)
chunk_embeddings = np.array(chunk_embeddings, dtype='float32')
dimension = chunk_embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(chunk_embeddings)
return index, chunk_embeddings
################################################################################
# 4. Retrieval Function
################################################################################
def retrieve_chunks(query, index, chunks, top_k=3):
query_embedding = embedding_model.encode([query], show_progress_bar=False)
query_embedding = np.array(query_embedding, dtype='float32')
distances, indices = index.search(query_embedding, top_k)
return [chunks[i] for i in indices[0]]
################################################################################
# 5. Gemini LLM Integration
################################################################################
def gemini_generate(prompt):
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
if not gemini_api_key:
return "Error: No GEMINI_API_KEY found in environment variables."
url = (
"https://generativelanguage.googleapis.com/"
"v1beta/models/gemini-1.5-flash:generateContent"
f"?key={gemini_api_key}"
)
data = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, json=data)
if response.status_code != 200:
return f"Error {response.status_code}: {response.text}"
r_data = response.json()
try:
return r_data["candidates"][0]["content"]["parts"][0]["text"]
except Exception:
return f"Parsing error or unexpected response structure: {r_data}"
################################################################################
# 6. RAG QA Function
################################################################################
def answer_question_with_RAG(user_question, index, chunks):
relevant_chunks = retrieve_chunks(user_question, index, chunks, top_k=3)
context = "\n\n".join(relevant_chunks)
prompt = f"""
You are an AI assistant that knows the details from the uploaded research paper.
Answer the user's question accurately using the context below.
If something is not in the context, say you don't know.
Context:
{context}
User's question: {user_question}
Answer:
"""
return gemini_generate(prompt)
################################################################################
# 7. Gradio Interface
################################################################################
def process_pdf(pdf_file):
if pdf_file is None:
return None, "Please upload a PDF file."
text = extract_pdf_text(pdf_file.name)
if not text:
return None, "No text found in PDF."
chunks = chunk_text(text, chunk_size=300, overlap=50)
if not chunks:
return None, "No valid text to chunk."
faiss_index, _ = build_faiss_index(chunks)
return (faiss_index, chunks), "PDF processed successfully!"
def chat_with_paper(query, state):
if not state:
return "Please upload and process a PDF first."
faiss_index, doc_chunks = state
if not query or not query.strip():
return "Please enter a valid question."
return answer_question_with_RAG(query, faiss_index, doc_chunks)
demo_theme = gr.themes.Soft(primary_hue="slate")
css_code = """
body {
background-color: #E6F7FF !important; /* Lightest blue */
margin: 0;
padding: 0;
}
.block > .inside {
margin: auto !important;
max-width: 900px !important;
border: 4px solid black !important;
border-radius: 10px !important;
background-color: #FFFFFF !important;
padding: 20px !important;
}
#icon-container {
text-align: center !important;
margin-top: 1rem !important;
margin-bottom: 1rem !important;
}
#app-title {
text-align: center !important;
font-size: 3rem !important;
font-weight: 900 !important;
margin-bottom: 0.5rem !important;
margin-top: 0.5rem !important;
}
#app-welcome {
text-align: center !important;
font-size: 1.5rem !important;
color: #444 !important;
margin-bottom: 25px !important;
font-weight: 700 !important;
}
button {
background-color: #3CB371 !important;
color: #ffffff !important;
border: none !important;
font-weight: 600 !important;
cursor: pointer;
}
button:hover {
background-color: #2E8B57 !important;
}
textarea, input[type="text"] {
text-align: center !important;
}
"""
with gr.Blocks(theme=demo_theme, css=css_code) as demo:
gr.Markdown("""
<div id="icon-container">
<img src="https://i.ibb.co/3Wp3yBZ/ai-icon.png" alt="AI icon" style="width:100px;">
</div>
""")
gr.Markdown("<div id='app-title'>AI-Powered Personal Research Assistant</div>")
gr.Markdown("<div id='app-welcome'>Welcome! How may I help you?</div>")
state = gr.State()
with gr.Row():
pdf_input = gr.File(label="Upload your research paper (PDF)", file_types=[".pdf"])
process_button = gr.Button("Process PDF")
status_output = gr.Textbox(label="Status", interactive=False)
process_button.click(
fn=process_pdf,
inputs=pdf_input,
outputs=[state, status_output]
)
with gr.Row():
user_query = gr.Textbox(label="Ask a question about your research paper:")
ask_button = gr.Button("Get Answer")
answer_output = gr.Textbox(label="Answer")
ask_button.click(
fn=chat_with_paper,
inputs=[user_query, state],
outputs=answer_output
)
demo.launch()